Skip to main content

Marshmallow Schema subclass that auto-defines fields based on SQLAlchemy classes

Project description

golden-marshmallows

A better integration between SQLAlchemy and Marshmallow. A little (SQL)alchemy to turn marshmallows into gold.

Note: The default unknown field handling has been defaulted to EXCLUDE so it handles closer to Marshmallow v2.

Installation

Simply install with pip:

$ pip install golden-marshmallows

Usage

Serialization

Take these SQLAlchemy models as examples:

class WizardCollege(Base):
    __tablename__ = 'wizard_college'
    id = Column(Integer, primary_key=True)
    name = Column(String)
    alchemists = relationship('Alchemist')

    def __repr__(self):
        return '<WizardCollege(name={self.name!r})>'.format(self=self)

class Alchemist(Base):
    __tablename__ = 'alchemists'
    id = Column(Integer, primary_key=True)
    name = Column(String)
    school_id = Column(Integer, ForeignKey('wizard_college.id'))
    formulae = relationship('Formula')

    def __repr__(self):
        return '<Alchemist(name={self.name!r})>'.format(self=self)

class Formula(Base):
    __tablename__ = 'forumulae'
    id = Column(Integer, primary_key=True)
    title = Column(String)
    author_id = Column(Integer, ForeignKey('alchemists.id'))

    def __repr__(self):
        return '<Formula(title={self.title!r})>'.format(self=self)

The GoldenSchema class allows quick and easy generation of marshmallow schemas that can be used for SQLAlchemy object serialization/deserialization. Simply pass the model class on initialization and you're ready to go:

import json
from golden_marshmallows.schema import GoldenSchema
from models import Alchemist, Formula, WizardCollege

alchemist = Alchemist(name='Albertus Magnus', school_id=1)
session.add(alchemist)
session.flush()

schema = GoldenSchema(Alchemist)

serialized = schema.dump(alchemist)

print(json.dump(serialized, indent=4))
# {
#     "id": 1,
#     "name": "Albertus Magnus",
#     "school_id": 1
# }

That's it! No need to define your own Schema subclass, unless you really want to (more on that below).

Nested objects

But what about this alchemist's formulae? Nested objects can easily be added to the mix by passing in a dictionary mapping each field that contains a nested object (or objects) to the relevant SQLAlchemy class:

nested_map = {
    'formulae': {
        'class': Formula,
        'many': True
    }
}

formula = Formula(title='transmutation')
alchemist.formulae.append(formula)
session.commit()

schema = GoldenSchema(Alchemist, nested_map=nested_map)

serialized = schema.dump(alchemist)

print(json.dump(serialized, indent=4))
# {
#     "id": 1,
#     "name": "Albertus Magnus",
#     "school_id": 1,
#     "formulae" : [
#         {
#             "title": "transmutation"
#         }
#     ]
# }

In fact, the GoldenSchema class supports arbitrary nesting in this fashion, simply adjust the map as necessary:

nested_map = {
    'alchemists': {
        'class': Alchemist,
        'many': True,
        'nested_map': {
            'formulae': {
                'class': Formula,
                'many': True
            }
        }
    }
}

college = WizardCollege(name='Bogwarts')
college.alchemists.append(alchemist)
session.add(college)
session.flush()

schema = GoldenSchema(WizardCollege, nested_map=nested_map)

serialized = schema.dump(college)

print(json.dump(serialized, indent=4))
# {
#     "id": 1,
#     "name": "Bogwarts",
#     "alchemists": [
#         {
#             "id": 1,
#             "school_id": 1,
#             "name": "Albertus Magnus",
#             "formulae": [
#                 {
#                     "title": "transmutation",
#                     "author_id": 1,
#                     "id": 1
#                 }
#             ]
#         }
#     ]
# }

You may need more control over the GoldenSchema instances that are nested into your top-level schema in the nested_map parameter. If that's the case, you can simply create a nested GoldenSchema instance and pass it in directly like so:

from marshmallow.fields import List, String


FormulaSchema = GoldenSchema(Formula)


class FormulaSchemaWithIngredients(FormulaSchema):
    ingredients = List(String())


nested_map = {
    'formulae': {
        'class': FormulaSchemaWithIngredients,
        'many': True
    }
}

alchemist = session.query(Alchemist).first()
formula = alchemist.formulae[0]
formula.ingredients = ['lead', 'magic']

schema = GoldenSchema(Alchemist, nested_map=nested_map)

serialized = schema.dump(alchemist)

print(json.dump(serialized, indent=4))
# {
#     "id": 1,
#     "name": "Albertus Magnus",
#     "school_id": 1,
#     "formulae" : [
#         {
#             "title": "transmutation",
#             "ingredients": [
#                 "lead",
#                 "magic"
#             ]
#         }
#     ]
# }

Deserialization

Of course, you can deserialize data into SQLAlchemy objects just as easily:

# Start at the end of the last example and work backwards
data = {
    "id": 1,
    "name": "Bogwarts",
    "alchemists": [
        {
            "formulae": [
                {
                    "title": "transmutation",
                    "author_id": 1,
                    "id": 1
                }
            ],
            "school_id": 1,
            "id": 1,
            "name": "Albertus Magnus"
        }
    ]
}

college = schema.load(data)
print(college)
# <WizardCollege(name='Bogwarts')>
print(college.alchemists)
# [<Alchemist(name='Albertus Magnus')>]
print(college.alchemists[0].formulae)
# [<Formula(title='transmutation')>]

Extra Features

camelCasing/snake_casing

The snake_to_camel flag allows serde to/from camelCase, for example when serializing Python data into JSON to send as an API Response:

# `Formula.author_id` is easily converted to camelCase
schema = GoldenSchema(Formula, snake_to_camel=True)

serialized = schema.dump(formula)

print(json.dumps(serialized, indent=4))
# Notice `author_id` has become `authorId`
# {
#     "title": "transmutation",
#     "authorId": 1,
#     "id": 1
# }

The same GoldenSchema instance, when used to load (deserialize) data, will expect camelCased attributes and load them as snake_cased attributes:

data = {
    "title": "transmutation",
    "authorId": 1,
    "id": 1
}
formula = schema.load(data)

print(formula.author_id)
# 1

A flag with the opposite behavior, camel_to_snake, is also included.

This feature also works for manually declared fields; that is, fields you yourself declare when subclassing GoldenSchema like so:

class MySchema(GoldenSchema):
    manually_declared = fields.Function(lambda obj: 'my special value')

my_schema = MySchema(Formula, snake_to_camel=True)

serialized = schema.dump(formula)
print(json.dumps(serialized, indent=4))
# `manually_declared` has become camelCase
# {
#     "title": "transmutation",
#     "authorId": 1,
#     "id": 1,
#     "manuallyDeclared": "my special value"
# }

In fact, you can use this feature without involving SQLAlchemy at all; just use CaseChangingSchema, the parent class of GoldenSchema:

from golden_marshmallows.schema import CaseChangingSchema

class SnakeSchema(CaseChangingSchema):
    attr_one = fields.String()
    attr_two = fields.Integer()

class SnakeObj:
    def __init__(self, attr_one, attr_two):
        self.attr_one = attr_one
        self.attr_two = attr_two

schema = SnakeSchema(snake_to_camel=True)
obj = SnakeObj('field1', 2)

serialized = schema.dump(obj)
print(json.dumps(serialized, indent=4))
# {
#     'attrOne': 'field1',
#     'attrTwo': 2
# }

Copying objects

As a minor convenience, you can pass the new_obj flag on initialization to indicate that any fields named id should be ignored during deserialization:

schema = GoldenSchema(Formula, snake_to_camel=True, new_obj=True)

data = {
    "title": "transmutation",
    "authorId": 1,
    "id": 1
}

new_formula = schema.load(data)
print(new_formula.title)
# 'transmutation'
print(new_formula.id)  # None

This allows you to quickly deserialize data representations of existing objects into new copies.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

golden_marshmallows-1.0.0.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

golden_marshmallows-1.0.0-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file golden_marshmallows-1.0.0.tar.gz.

File metadata

  • Download URL: golden_marshmallows-1.0.0.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for golden_marshmallows-1.0.0.tar.gz
Algorithm Hash digest
SHA256 1e61dc795be4bf43fc50ba6ec8d67a32c275ba42bd3b52350cfe79359b1faf22
MD5 035bbf58d93f1af3a6a2148864e7354f
BLAKE2b-256 7a71048e43b7a735a7c79f44220b8d19f41913a5ceb516c93d7709aa37ec4000

See more details on using hashes here.

File details

Details for the file golden_marshmallows-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: golden_marshmallows-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for golden_marshmallows-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d8f131e1d69c624e1e372287f6e85f66a0bdc9215b60331d5d0f86b419f6dbe1
MD5 e67d9a3a2761c9a8fbeda68080e944af
BLAKE2b-256 0c242e42344530dfc8f4a90d466fca887600f44ec0f76bac49366147730aeafa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page