Implementation of Gradient Origin Networks in PyTorch
Project description
Gradient Origin Networks in PyTorch
Unofficial PyTorch implementation of Gradient Origin Networks.
Reconstructions | Samples |
---|---|
Usage
Training
Requirements:
After cloning the repository, a GON can be trained using the train_gon.py
script:
python train_gon.py dataset.name=<MNIST|FashionMNIST|CIFAR10> dataset.root=<data-root>
All configuration options are listed in config/config.yaml
. See the hydra documentation for more information on configuration.
From Code
Install the package:
pip install gon-pytorch
Instantiate a GON with NeRF positional encodings:
import torch
from gon_pytorch import NeRFPositionalEncoding, ImplicitDecoder, GON, SirenBlockFactory
pos_encoder = NeRFPositionalEncoding(in_dim=2)
decoder = ImplicitDecoder(
latent_dim=128,
out_dim=3,
hidden_dim=128,
num_layers=4,
block_factory=SirenBlockFactory(),
pos_encoder=pos_encoder
)
gon = GON(decoder)
coords = torch.randn(1, 32, 32, 2)
image = torch.rand(1, 32, 32, 3)
# Obtain latent
latent, latent_loss = gon.infer_latents(coords, image)
# Reconstruct from latent
recon = gon(coords, latent)
# Optimize model
loss = ((recon - image) ** 2).mean()
loss.backward()
Differences to the original implementation
- Cross-entropy is used as loss instead of MSE as this seems to be improve results
- The original implementation obtains gradients with respect to the origin by calculating the mean over the latent loss. This seems to cause a bias on the batch-size as the mean loss is evenly distributed on the single latents in the backward pass. This is fixed by summing over the batch dimension for the latent loss instead of using the mean.
- Latent modulation from Modulated Periodic Activations for Generalizable Local Functional Representations is implemented and can optionally be used.
Citations
@misc{bondtaylor2021gradient,
title={Gradient Origin Networks},
author={Sam Bond-Taylor and Chris G. Willcocks},
year={2021},
eprint={2007.02798},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{sitzmann2020implicit,
title={Implicit Neural Representations with Periodic Activation Functions},
author={Vincent Sitzmann and Julien N. P. Martel and Alexander W. Bergman and David B. Lindell and Gordon Wetzstein},
year={2020},
eprint={2006.09661},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{mildenhall2020nerf,
title={NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis},
author={Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng},
year={2020},
eprint={2003.08934},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{mehta2021modulated,
title = {Modulated Periodic Activations for Generalizable Local Functional Representations},
author = {Ishit Mehta and Michaël Gharbi and Connelly Barnes and Eli Shechtman and Ravi Ramamoorthi and Manmohan Chandraker},
year = {2021},
eprint = {2104.03960},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gon-pytorch-0.1.1.tar.gz
(7.4 kB
view details)
Built Distribution
File details
Details for the file gon-pytorch-0.1.1.tar.gz
.
File metadata
- Download URL: gon-pytorch-0.1.1.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e7d123a285a227ecbe8258d1b590d6a9ed3502f0ce02785d6fef4adc12dfd44 |
|
MD5 | ebb76eb1cb1f76e76ec8af7a6268a3d9 |
|
BLAKE2b-256 | e3f2171fe768a6d9421a6b9805e85dbf59f0ac2d4ed1c4973093b2b661f544b1 |
File details
Details for the file gon_pytorch-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: gon_pytorch-0.1.1-py3-none-any.whl
- Upload date:
- Size: 7.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 55cea2f6c30af560ab9e59a3808cddde6cf60f06a2b62565bfb3f393eca464df |
|
MD5 | da62262b06a97fb2782298a313179dfc |
|
BLAKE2b-256 | 51af848d3699a8910b5c69effa647cd3a07426cdc5a23382ff448f270deebb5e |