Skip to main content

dbt plugin for GoodData

Project description

gooddata-dbt

GoodData plugin for dbt. Reads dbt models and profiles, generates GoodData semantic model.

Install

pip install gooddata-dbt
# Or add the corresponding line to requirements.txt
# Or install specific version
pip install gooddata-dbt==1.0.0

Configuration, parametrization

Create gooddata.yaml file to configure so-called data products and environments. Check gooddata_example.yml file for more details.

Parametrization of each execution can be done using environment variables / tool arguments. Use main --help and --help for each use case to learn more.

Alternatively, you can configure everything with environment variables. You can directly set env variables in a shell session, or store them to .env file(s). We provide the following example:

  • .env.dev
  • .env.custom.dev is loaded from the above file and contains sensitive variables. Add .env.custom.* to .gitignore!

Then load .env files:

source .env.local

Use cases

gooddata-dbt --help

The plugin provides the following use cases:

  • provision_workspaces
    • Provisions workspaces to GoodData based on gooddata.yaml file
  • register_data_sources
    • Registers data source in GoodData for each relevant dbt profile
  • deploy_ldm
    • Reads dbt models and profiles
    • Scans data source (connection props from dbt profiles) through GoodData to get column data types (optional in dbt)
    • Generates GoodData LDM(Logical Data Model) from dbt models. Can utilize custom gooddata-specific metadata, more below
  • upload_notification
    • Invalidates caches for data source
  • deploy_analytics
    • Reads content of gooddata_layout folder and deploys analytics model to GoodData
  • store_analytics
    • Reads analytics model from GoodData instance and stores it to disk to gooddata_layout folder
  • test_insights
    • Lists all insights(reports) from GoodData instance, and executes each report to validate it

Custom metadata in dbt models (optional)

If you want to generate optimal LDM from dbt models, sometimes you need to specify semantic metadata in dbt models.

In general, all GoodData metadata must be put to dbt models under meta key, except descriptions.

Titles, descriptions

dbt supports only description field. For now, gooddata-dbt generates GoodData title/description from dbt description.

Can be specified for both tables and columns.

Model ID

Per table, you can specify model_id. When deploying models/analytics, you can include any subset of model_ids.

models:
  - name: xxx
    meta:
      gooddata:
        model_id: my_id

GoodData entities

By default, gooddata-dbt generates GoodData entities based on the following rules:

  • data type = NUMERIC (decimal number) - fact
  • data_type = DATE/TIMESTAMP/TIMESTAMPTZ - date dimension
  • other data types = attributes

To override the default, specify custom GoodData meta this way:

columns:
  - name: xxxx
    meta:
      gooddata:
        ldm_type: fact/attribute/label/date/reference/primary_key
        referenced_table: <table name, target of reference (FK), if ldm_type=reference>
        label_type: TEXT/HYPERLINK/GEO_LATITUDE/GEO_LONGITUDE
        attribute_column: <column name of attribute of label, if ldm_type=label>

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gooddata-dbt-1.9.0.tar.gz (34.8 kB view details)

Uploaded Source

Built Distribution

gooddata_dbt-1.9.0-py3-none-any.whl (38.2 kB view details)

Uploaded Python 3

File details

Details for the file gooddata-dbt-1.9.0.tar.gz.

File metadata

  • Download URL: gooddata-dbt-1.9.0.tar.gz
  • Upload date:
  • Size: 34.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for gooddata-dbt-1.9.0.tar.gz
Algorithm Hash digest
SHA256 f8f6adaf2095d019eb11fa9fdaa45694e0e45e496e84a242e741e4c9022f8224
MD5 dd49b290fc9ba27abe6ab53e1f666b8d
BLAKE2b-256 afd274aa045051a6c3cdd9c60744f54e18244cd5c3685b0cfd8316ead7fb5f9f

See more details on using hashes here.

File details

Details for the file gooddata_dbt-1.9.0-py3-none-any.whl.

File metadata

  • Download URL: gooddata_dbt-1.9.0-py3-none-any.whl
  • Upload date:
  • Size: 38.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for gooddata_dbt-1.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1f54a6e992684650c8ea9f858b681a0ea5710002269bedfaf845dfde7d8a82e2
MD5 3a72851c75c20c96cc98fcdde12bc159
BLAKE2b-256 b01f4d79d339832a9fa935f58ef46ffcdf301ccdda63fe6f66ddda508140eb73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page