Skip to main content

dbt plugin for GoodData

Project description

gooddata-dbt

GoodData plugin for dbt. Reads dbt models and profiles, generates GoodData semantic model.

Install

pip install gooddata-dbt
# Or add the corresponding line to requirements.txt
# Or install specific version
pip install gooddata-dbt==1.0.0

Configuration, parametrization

Create gooddata.yaml file to configure so-called data products and environments. Check gooddata_example.yml file for more details.

Parametrization of each execution can be done using environment variables / tool arguments. Use main --help and --help for each use case to learn more.

Alternatively, you can configure everything with environment variables. You can directly set env variables in a shell session, or store them to .env file(s). We provide the following example:

  • .env.dev
  • .env.custom.dev is loaded from the above file and contains sensitive variables. Add .env.custom.* to .gitignore!

Then load .env files:

source .env.local

Use cases

gooddata-dbt --help

The plugin provides the following use cases:

  • provision_workspaces
    • Provisions workspaces to GoodData based on gooddata.yaml file
  • register_data_sources
    • Registers data source in GoodData for each relevant dbt profile
  • deploy_ldm
    • Reads dbt models and profiles
    • Scans data source (connection props from dbt profiles) through GoodData to get column data types (optional in dbt)
    • Generates GoodData LDM(Logical Data Model) from dbt models. Can utilize custom gooddata-specific metadata, more below
  • upload_notification
    • Invalidates caches for data source
  • deploy_analytics
    • Reads content of gooddata_layout folder and deploys analytics model to GoodData
  • store_analytics
    • Reads analytics model from GoodData instance and stores it to disk to gooddata_layout folder
  • test_insights
    • Lists all insights(reports) from GoodData instance, and executes each report to validate it

Custom metadata in dbt models (optional)

If you want to generate optimal LDM from dbt models, sometimes you need to specify semantic metadata in dbt models.

In general, all GoodData metadata must be put to dbt models under meta key, except descriptions.

Titles, descriptions

dbt supports only description field. For now, gooddata-dbt generates GoodData title/description from dbt description.

Can be specified for both tables and columns.

Model ID

Per table, you can specify model_id. When deploying models/analytics, you can include any subset of model_ids.

models:
  - name: xxx
    meta:
      gooddata:
        model_id: my_id

GoodData entities

By default, gooddata-dbt generates GoodData entities based on the following rules:

  • data type = NUMERIC (decimal number) - fact
  • data_type = DATE/TIMESTAMP/TIMESTAMPTZ - date dimension
  • other data types = attributes

To override the default, specify custom GoodData meta this way:

columns:
  - name: xxxx
    meta:
      gooddata:
        ldm_type: fact/attribute/label/date/reference/primary_key
        referenced_table: <table name, target of reference (FK), if ldm_type=reference>
        label_type: TEXT/HYPERLINK/GEO_LATITUDE/GEO_LONGITUDE
        attribute_column: <column name of attribute of label, if ldm_type=label>

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gooddata-dbt-1.9.1.dev1.tar.gz (34.9 kB view details)

Uploaded Source

Built Distribution

gooddata_dbt-1.9.1.dev1-py3-none-any.whl (38.3 kB view details)

Uploaded Python 3

File details

Details for the file gooddata-dbt-1.9.1.dev1.tar.gz.

File metadata

  • Download URL: gooddata-dbt-1.9.1.dev1.tar.gz
  • Upload date:
  • Size: 34.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for gooddata-dbt-1.9.1.dev1.tar.gz
Algorithm Hash digest
SHA256 20992c1e8cb1e95f0a570fed9b2f953544be70002f99ba0987130dc895ffb99b
MD5 9c0c9d3b56098709e5b278219025e016
BLAKE2b-256 e0e6aae416564ce76ca33ee9de368048118ded67271882273787e574c25abeec

See more details on using hashes here.

File details

Details for the file gooddata_dbt-1.9.1.dev1-py3-none-any.whl.

File metadata

File hashes

Hashes for gooddata_dbt-1.9.1.dev1-py3-none-any.whl
Algorithm Hash digest
SHA256 0e8f0b2d19175b5202efa2a1d0c1181aac6db13d7c1b9f4bce397986e2275ad9
MD5 45adcc3fe622aba2577eb6f64c52c517
BLAKE2b-256 a25b77aa630de389e1abd7b96e851a801970d7a210513aff4e8bacbee4628ad4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page