Skip to main content

Python Client for Google BigQuery

Project description

Python idiomatic client for Google BigQuery

pypi versions

Quick Start

$ pip install --upgrade google-cloud-bigquery

Fore more information on setting up your Python development environment, such as installing pip and on your system, please refer to Python Development Environment Setup Guide for Google Cloud Platform.

Authentication

With google-cloud-python we try to make authentication as painless as possible. Check out the Authentication section in our documentation to learn more. You may also find the authentication document shared by all the google-cloud-* libraries to be helpful.

Using the API

Querying massive datasets can be time consuming and expensive without the right hardware and infrastructure. Google BigQuery (BigQuery API docs) solves this problem by enabling super-fast, SQL queries against append-mostly tables, using the processing power of Google’s infrastructure.

Create a dataset

from google.cloud import bigquery
from google.cloud.bigquery import Dataset

client = bigquery.Client()

dataset_ref = client.dataset('dataset_name')
dataset = Dataset(dataset_ref)
dataset.description = 'my dataset'
dataset = client.create_dataset(dataset)  # API request

Load data from CSV

import csv

from google.cloud import bigquery
from google.cloud.bigquery import LoadJobConfig
from google.cloud.bigquery import SchemaField

client = bigquery.Client()

SCHEMA = [
    SchemaField('full_name', 'STRING', mode='required'),
    SchemaField('age', 'INTEGER', mode='required'),
]
table_ref = client.dataset('dataset_name').table('table_name')

load_config = LoadJobConfig()
load_config.skip_leading_rows = 1
load_config.schema = SCHEMA

# Contents of csv_file.csv:
#     Name,Age
#     Tim,99
with open('csv_file.csv', 'rb') as readable:
    client.load_table_from_file(
        readable, table_ref, job_config=load_config)  # API request

Perform a query

# Perform a query.
QUERY = (
    'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` '
    'WHERE state = "TX" '
    'LIMIT 100')
query_job = client.query(QUERY)  # API request
rows = query_job.result()  # Waits for query to finish

for row in rows:
    print(row.name)

See the google-cloud-python API BigQuery documentation to learn how to connect to BigQuery using this Client Library.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

google-cloud-bigquery-0.28.0.tar.gz (113.8 kB view details)

Uploaded Source

Built Distribution

google_cloud_bigquery-0.28.0-py2.py3-none-any.whl (64.5 kB view details)

Uploaded Python 2Python 3

File details

Details for the file google-cloud-bigquery-0.28.0.tar.gz.

File metadata

File hashes

Hashes for google-cloud-bigquery-0.28.0.tar.gz
Algorithm Hash digest
SHA256 511f27e5e398f8bb4dcad914596e32fe5bcb111257f032d93956a2dcced4a00f
MD5 e20128ebd808c672eb92c9516e8e6977
BLAKE2b-256 6304f7fcc031d00bb6d2fde7a1b56e76ee205a0a069856e183aafd0b70a44536

See more details on using hashes here.

File details

Details for the file google_cloud_bigquery-0.28.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for google_cloud_bigquery-0.28.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1c5a42332b43b58d6039fbca697a88c230487212afb6b4a6cbe0d5f3d5685785
MD5 fc843e0dc99b31d231d936d4551d0340
BLAKE2b-256 7cf6193729cb124770c710b9eab14f2fe2c3c7b285cc7b8cc70f48c162616e09

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page