Skip to main content

MLflow Google Cloud Vertex AI integration package

Project description

MLflow plugin for Google Cloud Vertex AI

Note: The plugin is experimental and may be changed or removed in the future.

Installation

python3 -m pip install google_cloud_mlflow

Deployment plugin usage

Command-line

Create deployment

mlflow deployments create --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"

List deployments

mlflow deployments list --target google_cloud

Get deployment

mlflow deployments get --target google_cloud --name "deployment name"

Delete deployment

mlflow deployments delete --target google_cloud --name "deployment name"

Update deployment

mlflow deployments update --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"

Predict

mlflow deployments predict --target google_cloud --name "deployment name" --input-path "inputs.json" --output-path "outputs.json

Get help

mlflow deployments help --target google_cloud

Python

from mlflow import deployments
client = deployments.get_deploy_client("google_cloud")

# Create deployment
model_uri = "models:/mymodel/mymodelversion"
deployment = client.create_deployment(
    name="deployment name",
    model_uri=model_uri,
    # Config is optional
    config=dict(
        # Deployed model config
        machine_type="n1-standard-2",
        min_replica_count=None,
        max_replica_count=None,
        accelerator_type=None,
        accelerator_count=None,
        service_account=None,
        explanation_metadata=None, # JSON string
        explanation_parameters=None, # JSON string

        # Model container image building config
        destination_image_uri=None,

        # Endpoint config
        endpoint_description=None,
        endpoint_deploy_timeout=None,

        # Vertex AI config
        project=None,
        location=None,
        encryption_spec_key_name=None,
        staging_bucket=None,
    )
)

# List deployments
deployments = client.list_deployments()

# Get deployment
deployments = client.get_deployment(name="deployment name")

# Delete deployment
deployment = client.delete_deployment(name="deployment name")

# Update deployment
deployment = client.create_deployment(
    name="deployment name",
    model_uri=model_uri,
    # Config is optional
    config=dict(...),
)

# Predict
import pandas
df = pandas.DataFrame([
    {"a": 1,"b": 2,"c": 3},
    {"a": 4,"b": 5,"c": 6}
])
predictions = client.predict("deployment name", df)

Model Registry plugin usage

Set the MLflow Model Registry URI to a directory in some Google Cloud Storage bucket, then log models using mlflow.log_model as usual.

mlflow.set_registry_uri("gs://<bucket>/models/")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

google_cloud_mlflow-0.0.6.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

google_cloud_mlflow-0.0.6-py3-none-any.whl (25.0 kB view details)

Uploaded Python 3

File details

Details for the file google_cloud_mlflow-0.0.6.tar.gz.

File metadata

  • Download URL: google_cloud_mlflow-0.0.6.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.12

File hashes

Hashes for google_cloud_mlflow-0.0.6.tar.gz
Algorithm Hash digest
SHA256 ffbb0434b5103c63b470b30007e450bf49e5d9900777ce97b9ec0d780d843509
MD5 d48fb50f8d48f25cf455abfe2c854e02
BLAKE2b-256 9ab82b5f7b3bd94db0b5430685c431cef3976c98943f41d61e9f546123aa8c2b

See more details on using hashes here.

File details

Details for the file google_cloud_mlflow-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: google_cloud_mlflow-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 25.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.12

File hashes

Hashes for google_cloud_mlflow-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 70cdfa10ba2bb858f58373a4aeada9c4def00c105e2a45c09557b4688f299ced
MD5 06cb93c1395b526477b3b04cc83c8bc1
BLAKE2b-256 419c8cecc34e594e12b5cf15ed816de02736f1e82d23b7ce72dd9fd7bda36c7f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page