Package for ingesting Qlik metadata into Google Cloud Data Catalog
Project description
google-datacatalog-qlik-connector
Package for ingesting Qlik Sense metadata into Google Cloud Data Catalog, currently supporting below asset types:
- Custom Property Definition
- Stream
- App (only the published ones)
- Master Items: Dimension
- Master Items: Measure
- Master Items: Visualization
- Sheet (only the published ones)
Disclaimer: This is not an officially supported Google product.
Table of Contents
- 1. Installation
- 2. Environment setup
- 3. Running the connector
- 4. Design decisions
- 5. Developer environment
- 6. Troubleshooting
1. Installation
Install this library in a virtualenv using pip. virtualenv is a tool to create isolated Python environments. The basic problem it addresses is one of dependencies and versions, and indirectly permissions.
With virtualenv, it's possible to install this library without needing system install permissions, and without clashing with the installed system dependencies. Make sure you use Python 3.6+.
1.1. Mac/Linux
pip3 install virtualenv
virtualenv --python python3.6 <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install google-datacatalog-qlik-connector
1.2. Windows
pip3 install virtualenv
virtualenv --python python3.6 <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install google-datacatalog-qlik-connector
1.3. Install from source
1.3.1. Get the code
git clone https://github.com/GoogleCloudPlatform/datacatalog-connectors-bi/
cd datacatalog-connectors-bi/google-datacatalog-qlik-connector
1.3.2. Create and activate a virtualenv
pip3 install virtualenv
virtualenv --python python3.6 <your-env>
source <your-env>/bin/activate
1.3.3. Install the library
pip install .
2. Environment setup
2.1. Auth credentials
2.1.1. Create a GCP Service Account and grant it below roles
- Data Catalog Admin
2.1.2. Download a JSON key and save it as
<YOUR-CREDENTIALS_FILES_FOLDER>/qlik2dc-datacatalog-credentials.json
Please notice this folder and file will be required in next steps.
2.2. Set environment variables
The connector uses Windows-based NTLM authentication, which requires the
username to be provided in the format of <ẃindows-ad-domain>\<username>
. When
fulfilling the below environment variables, set QLIK2DC_QLIK_AD_DOMAIN
with
the Windows Active Directory domain your user belongs to and
QLIK2DC_QLIK_USERNAME
with the username (no backslash in both).
export GOOGLE_APPLICATION_CREDENTIALS=datacatalog_credentials_file
export QLIK2DC_QLIK_SERVER=qlik_server
export QLIK2DC_QLIK_AD_DOMAIN=qlik_ad_domain
export QLIK2DC_QLIK_USERNAME=qlik_username
export QLIK2DC_QLIK_PASSWORD=qlik_password
export QLIK2DC_DATACATALOG_PROJECT_ID=google_cloud_project_id
export QLIK2DC_DATACATALOG_LOCATION_ID=google_cloud_location_id
Replace above values according to your environment. The Data Catalog credentials file was saved in step 2.1.2.
3. Running the connector
- The
--qlik-ad-domain
argument is optional and defaults to.
. - The
--datacatalog-location-id
argument is optional and defaults tous
.
3.1. Python entry point
- Virtualenv
google-datacatalog-qlik-connector \
--qlik-server $QLIK2DC_QLIK_SERVER \
[--qlik-ad-domain $QLIK2DC_QLIK_AD_DOMAIN \]
--qlik-username $QLIK2DC_QLIK_USERNAME \
--qlik-password $QLIK2DC_QLIK_PASSWORD \
--datacatalog-project-id $QLIK2DC_DATACATALOG_PROJECT_ID \
[--datacatalog-location-id $QLIK2DC_DATACATALOG_LOCATION_ID]
3.2. Docker entry point
docker build --rm --tag qlik2datacatalog .
docker run --rm --tty -v YOUR-CREDENTIALS_FILES_FOLDER:/data \
qlik2datacatalog \
--qlik-server $QLIK2DC_QLIK_SERVER \
[--qlik-ad-domain $QLIK2DC_QLIK_AD_DOMAIN \]
--qlik-username $QLIK2DC_QLIK_USERNAME \
--qlik-password $QLIK2DC_QLIK_PASSWORD \
--datacatalog-project-id $QLIK2DC_DATACATALOG_PROJECT_ID \
[--datacatalog-location-id $QLIK2DC_DATACATALOG_LOCATION_ID]
4. Design decisions
4.1. Tag Templates for Custom Property Choice Values
The current implementation creates a Tag Template for each Custom Property
Choice Value assigned to Streams or Apps in the provided Qlik Sense site. The
rationale behind this decision comprises allowing the connector to synchronize
all metadata scraped from each Custom Property, at the same time it enables
Qlik assets to be easily found by their custom properties — using query strings
such as tag:property_name:"<PROPERTY-NAME>"
and tag:value:"<SOME-VALUE>"
.
Data Catalog accepts attaching only one Tag per Template to a given Entry, so there could be metadata loss if the Tag Templates were created in different ways, e.g. on a Custom Property Definition basis.
Lastly, this approach may lead to the creation of several Tag Templates if there are many Custom Property Values in use in your Qlik Sense site. In case you would like to suggest a different approach to tackle this problem, please file a feature request. We will be happy to discuss alternative solutions!
5. Developer environment
5.1. Install and run Yapf formatter
pip install --upgrade yapf
# Auto update files
yapf --in-place --recursive src tests
# Show diff
yapf --diff --recursive src tests
# Set up pre-commit hook
# From the root of your git project.
curl -o pre-commit.sh https://raw.githubusercontent.com/google/yapf/master/plugins/pre-commit.sh
chmod a+x pre-commit.sh
mv pre-commit.sh .git/hooks/pre-commit
5.2. Install and run Flake8 linter
pip install --upgrade flake8
flake8 src tests
5.3. Run Tests
python setup.py test
5.4. Additional resources
Please refer to the Developer Resources documentation.
6. Troubleshooting
6.1. Qlik APIs compatibility
The connector may fail during the scrape stage if the Qlik APIs do not return metadata in the expected format. As a reference, the below versions were already validated:
- Qlik Sense Repository Service API
VERSION | RESULT |
---|---|
34.16.0 (September2020) | SUCCESS |
- Qlik Engine JSON API
VERSION | RESULT |
---|---|
12.763.4 (September2020) | SUCCESS |
6.2. Data Catalog quota
In case a connector execution hits Data Catalog quota limit, an error will be raised and logged with the following details, depending on the performed operation (READ/WRITE/SEARCH):
status = StatusCode.RESOURCE_EXHAUSTED
details = "Quota exceeded for quota metric 'Read requests' and limit 'Read requests per minute' of service 'datacatalog.googleapis.com' for consumer 'project_number:1111111111111'."
debug_error_string =
"{"created":"@1587396969.506556000", "description":"Error received from peer ipv4:172.217.29.42:443","file":"src/core/lib/surface/call.cc","file_line":1056,"grpc_message":"Quota exceeded for quota metric 'Read requests' and limit 'Read requests per minute' of service 'datacatalog.googleapis.com' for consumer 'project_number:1111111111111'.","grpc_status":8}"
For more information on Data Catalog quota, please refer to: Data Catalog quota docs.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file google-datacatalog-qlik-connector-0.1.2.tar.gz
.
File metadata
- Download URL: google-datacatalog-qlik-connector-0.1.2.tar.gz
- Upload date:
- Size: 31.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.6.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7cb29d559d95fdb1d2939e5cd526dad2a980444c43cb5327b63f8553deebfb2 |
|
MD5 | b34078ac84f8e0eb2ab6606e42344b72 |
|
BLAKE2b-256 | 7044ab3d3eca93919a766785e9af78bbf7ac828267a36dd92f0b9bf1ea313664 |
File details
Details for the file google_datacatalog_qlik_connector-0.1.2-py2.py3-none-any.whl
.
File metadata
- Download URL: google_datacatalog_qlik_connector-0.1.2-py2.py3-none-any.whl
- Upload date:
- Size: 49.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.6.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a6e7525808bfceac222e7bc397ce0484e8fb4a646117000646aa455dbed1dc84 |
|
MD5 | 78edc1ac1b16b137a0fff24dffa41df4 |
|
BLAKE2b-256 | 385a7d69eb81413073eb921d61e4aae1d56875b7cc480899f88b595bd418808d |