Skip to main content

Library for ingesting Sap Hana Database metadata into Google Cloud Data Catalog

Project description

google-datacatalog-saphana-connector

Library for ingesting SAP Hana Database metadata into Google Cloud Data Catalog.

Python package PyPi License Issues

Disclaimer: This is not an officially supported Google product.

Table of Contents


1. Installation

Install this library in a virtualenv using pip. virtualenv is a tool to create isolated Python environments. The basic problem it addresses is one of dependencies and versions, and indirectly permissions.

With virtualenv, it's possible to install this library without needing system install permissions, and without clashing with the installed system dependencies. Make sure you use Python 3.6+. This connector is tested in versions 3.6, 3.7, 3.8.

1.1. Mac/Linux

pip3 install virtualenv
virtualenv --python python3.7 <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install google-datacatalog-saphana-connector

1.2. Windows

pip3 install virtualenv
virtualenv --python python3.7 <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install google-datacatalog-saphana-connector

1.3. Install from source

1.3.1. Get the code

git clone https://github.com/GoogleCloudPlatform/datacatalog-connectors-rdbms/
cd datacatalog-connectors-rdbms/google-datacatalog-saphana-connector

1.3.2. Create and activate a virtualenv

pip3 install virtualenv
virtualenv --python python3.7 <your-env>
source <your-env>/bin/activate

1.3.3. Install the library

pip install .

2. Environment setup

2.1. Auth credentials

2.1.1. Create a service account and grant it below roles

  • Data Catalog Admin

2.1.2. Download a JSON key and save it as

  • <YOUR-CREDENTIALS_FILES_FOLDER>/saphana2dc-credentials.json

Please notice this folder and file will be required in next steps.

2.2. Set environment variables

Replace below values according to your environment:

export GOOGLE_APPLICATION_CREDENTIALS=data_catalog_credentials_file

export SAPHANA2DC_DATACATALOG_PROJECT_ID=google_cloud_project_id
export SAPHANA2DC_DATACATALOG_LOCATION_ID=google_cloud_location_id
export SAPHANA2DC_SAPHANA_SERVER=saphana_server
export SAPHANA2DC_SAPHANA_USERNAME=saphana_username
export SAPHANA2DC_SAPHANA_PASSWORD=saphana_password
export SAPHANA2DC_SAPHANA_DATABASE=saphana_database
export SAPHANA2DC_RAW_METADATA_CSV=saphana_raw_csv (If supplied ignores the SAPHANA server credentials)

3. Adapt user configurations

Along with default metadata, the connector can enrich metadata with user provided values as well, such as adding a prefix to each schema and tables name.

The table below shows what metadata is scraped by default, and what is configurable.

Metadata Description Scraped by default Config option
schema_name Name of the Schema Y ---
schema_owner Owner of the Schema Y ---
schema_create_time Schema creation time Y ---
table_name Name of a table Y ---
table_type Type of the table (ROW or COLUMN oriented) Y ---
has_primary_key Whether a Table has a primary key Y ---
table_description Table description Y ---
table_create_time Table creation time Y ---
column_name Name of a column Y ---
column_type Column data type Y ---
column_nullable Whether a column is nullable Y ---
column_mask Whether a column has data mask Y ---
column_mask_expression Column mask expression Y ---
prefix Prefix to be added to schema and tables name N/A enrich_metadata.entry_prefix
entry_id_pattern_for_prefix Entry ID pattern which the prefix will be applied N/A enrich_metadata.entry_id_pattern_for_prefix
table_size_mb Size of a table, in MB N sync_row_counts
table_rows Number of rows in a table N sync_row_counts

prefix should comply with Data Catalog entryId:

The ID must begin with a letter or underscore, contain only English letters, numbers and underscores, and have at most 64 characters (combined the prefix + the entryId).

if the entry_id_pattern_for_prefix is supplied, the prefix will only be applied to this pattern.

Sample configuration file ingest_cfg.yaml in the repository root shows what kind of configuration is expected.

If you want to enable the user defined config, please add ingest_cfg.yaml to the directory from which you execute the connector and adapt it to your needs.

4. Run entry point

4.1. Run Python entry point

  • Virtualenv
google-datacatalog-saphana-connector \
--datacatalog-project-id=$SAPHANA2DC_DATACATALOG_PROJECT_ID \
--datacatalog-location-id=$SAPHANA2DC_DATACATALOG_LOCATION_ID \
--saphana-host=$SAPHANA2DC_SAPHANA_SERVER \
--saphana-user=$SAPHANA2DC_SAPHANA_USERNAME \
--saphana-pass=$SAPHANA2DC_SAPHANA_PASSWORD \
--saphana-database=$SAPHANA2DC_SAPHANA_DATABASE  \
--raw-metadata-csv=$SAPHANA2DC_RAW_METADATA_CSV      

4.2. Run Docker entry point

docker build -t saphana2datacatalog .
docker run --rm --tty -v YOUR-CREDENTIALS_FILES_FOLDER:/data saphana2datacatalog \
--datacatalog-project-id=$SAPHANA2DC_DATACATALOG_PROJECT_ID \
--datacatalog-location-id=$SAPHANA2DC_DATACATALOG_LOCATION_ID \
--saphana-host=$SAPHANA2DC_SAPHANA_SERVER \
--saphana-user=$SAPHANA2DC_SAPHANA_USERNAME \
--saphana-pass=$SAPHANA2DC_SAPHANA_PASSWORD \
--saphana-database=$SAPHANA2DC_SAPHANA_DATABASE  \
--raw-metadata-csv=$SAPHANA2DC_RAW_METADATA_CSV       

5 Scripts inside tools

5.1. Data Catalog clean up

# List of projects split by comma. Can be a single value without comma
export SAPHANA2DC_DATACATALOG_PROJECT_IDS=my-project-1,my-project-2
# Run the clean up
python tools/cleanup_datacatalog.py --datacatalog-project-ids=$SAPHANA2DC_DATACATALOG_PROJECT_IDS 

6. Developer environment

6.1. Install and run Yapf formatter

pip install --upgrade yapf

# Auto update files
yapf --in-place --recursive src tests

# Show diff
yapf --diff --recursive src tests

# Set up pre-commit hook
# From the root of your git project.
curl -o pre-commit.sh https://raw.githubusercontent.com/google/yapf/master/plugins/pre-commit.sh
chmod a+x pre-commit.sh
mv pre-commit.sh .git/hooks/pre-commit

6.2. Install and run Flake8 linter

pip install --upgrade flake8
flake8 src tests

6.3. Run Tests

python setup.py test

7. Metrics

Metrics README.md

8. Troubleshooting

In the case a connector execution hits Data Catalog quota limit, an error will be raised and logged with the following detailement, depending on the performed operation READ/WRITE/SEARCH:

status = StatusCode.RESOURCE_EXHAUSTED
details = "Quota exceeded for quota metric 'Read requests' and limit 'Read requests per minute' of service 'datacatalog.googleapis.com' for consumer 'project_number:1111111111111'."
debug_error_string = 
"{"created":"@1587396969.506556000", "description":"Error received from peer ipv4:172.217.29.42:443","file":"src/core/lib/surface/call.cc","file_line":1056,"grpc_message":"Quota exceeded for quota metric 'Read requests' and limit 'Read requests per minute' of service 'datacatalog.googleapis.com' for consumer 'project_number:1111111111111'.","grpc_status":8}"

For more info about Data Catalog quota, go to: Data Catalog quota docs.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file google-datacatalog-saphana-connector-0.1.0.tar.gz.

File metadata

  • Download URL: google-datacatalog-saphana-connector-0.1.0.tar.gz
  • Upload date:
  • Size: 13.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.2.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for google-datacatalog-saphana-connector-0.1.0.tar.gz
Algorithm Hash digest
SHA256 7cb78adced6960c221d056467111f000c9815f8b42015cfd2ac90faca9555f93
MD5 0285abecf4f90fece0dc585a124c7f17
BLAKE2b-256 45497950800545fa79576184ee7fa91dc47e08e82f25b63938ece6001029a8e8

See more details on using hashes here.

File details

Details for the file google_datacatalog_saphana_connector-0.1.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for google_datacatalog_saphana_connector-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3925e763bff4fe651f715951015419f2df99f5a01c7dbc433f92583a445390e3
MD5 62666571f59692bb4a8409da4d7fecb1
BLAKE2b-256 fbe60973bbc74f4029cba758111b9bf60b769f3cb62d7d4b42823fb45dc2df32

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page