Skip to main content

Google Dataproc templates written in Python

Project description

Build Status Python Integration Test Status

Dataproc Templates (Python - PySpark)

Dataproc Templates (Python - PySpark) submit jobs to Dataproc Serverless using batches submit pyspark.

Run using PyPi package

In this README, you see instructions on how to submit Dataproc Serverless template jobs.
Currently, 3 options are described:

  • Using bin/start.sh
  • Using gcloud CLI
  • Using Vertex AI

Those 3 options require you to clone this repo and start running the templates.
The Dataproc Templates PyPi package is a 4th option to run templates from a PySpark environment directly (Dataproc or local/another).
Example:

!pip3 install --user google-dataproc-templates==0.0.3

from dataproc_templates.bigquery.bigquery_to_gcs import BigQueryToGCSTemplate
from pyspark.sql import SparkSession

args = dict()
args["bigquery.gcs.input.table"] = "<bq_dataset>.<bq_table>"
args["bigquery.gcs.input.location"] = "<location>"
args["bigquery.gcs.output.format"] = "<format>"
args["bigquery.gcs.output.mode"] = "<mode>"
args["bigquery.gcs.output.location"] = "gs://<bucket_name/path>"

spark = SparkSession.builder \
        .appName("BIGQUERYTOGCS") \
        .enableHiveSupport() \
        .getOrCreate()

template = BigQueryToGCSTemplate()
template.run(spark, args)

Pro Tip: Start a Dataproc Serverless Spark sessions in a Vertex AI managed notebook, and leverage a serverless Spark session, in which your job will run using Dataproc Serverless, instead of your local PySpark environment.

While this provides an easy way to get started, remember that the bin/start.sh already provides an easy way for you to, for example, specify required .jar dependencies. Using the PyPi package, you need to configure your PySpark sessions in accordance with the requirements of your specific template. You would need to, for example, specify the spark.driver.extraClassPath configuration:

spark = SparkSession.builder \
        ... \
        .config('spark.driver.extraClassPath', '<template_required_dependency>.jar')
        ... \
        .getOrCreate()

Setting up the local environment

It is recommended to use a virtual environment when setting up the local environment. This setup is not required for submitting templates, only for running and developing locally.

# Create a virtual environment, activate it and install requirements
mkdir venv
python -m venv venv/
source venv/bin/activate
pip install -r requirements.txt

Running unit tests

Unit tests are developed using pytest.

To run all unit tests, simply run pytest:

pytest

To generate a coverage report, run the tests using coverage

coverage run \
  --source=dataproc_templates \
  --module pytest \
  --verbose \
  test

coverage report --show-missing

Submitting templates to Dataproc Serverless

A shell script is provided to:

  • Build the python package
  • Set Dataproc parameters based on environment variables
  • Submit the desired template to Dataproc with the provided template parameters

When submitting, there are 3 types of properties/parameters for the user to provide.

  • Spark properties: Refer to this documentation to see the available spark properties.
  • Each template's specific parameters: refer to each template's README.
  • Common arguments: --template_name and --log_level
    • The --log_level parameter is optional, it defaults to INFO.
      • Possible choices are the Spark log levels: ["ALL", "DEBUG", "ERROR", "FATAL", "INFO", "OFF", "TRACE", "WARN"].

bin/start.sh usage:

# Set required environment variables
export GCP_PROJECT=<project_id>
export REGION=<region>
export GCS_STAGING_LOCATION=<gs://path>

# Set optional environment variables
export SUBNET=<subnet>
export JARS="gs://additional/dependency.jar"
export HISTORY_SERVER_CLUSTER=projects/{projectId}/regions/{regionId}/clusters/{clusterId}
export METASTORE_SERVICE=projects/{projectId}/locations/{regionId}/services/{serviceId}

# Submit to Dataproc passing template parameters
./bin/start.sh [--properties=<spark.something.key>=<value>] \
               -- --template=TEMPLATENAME \
                  --log_level=INFO \
                  --my.property="<value>" \
                  --my.other.property="<value>"
                  (etc...)

gcloud CLI usage:

It is also possible to submit jobs using the gcloud CLI directly. That can be achieved by:

  1. Building the dataproc_templates package into an .egg
PACKAGE_EGG_FILE=dist/dataproc_templates_distribution.egg
python setup.py bdist_egg --output=${PACKAGE_EGG_FILE}
  1. Submitting the job
  • The main.py file should be the main python script
  • The .egg file for the package must be bundled using the --py-files flag
gcloud dataproc batches submit pyspark \
      --region=<region> \
      --project=<project_id> \
      --jars="<required_jar_dependencies>" \
      --deps-bucket=<gs://path> \
      --subnet=<subnet> \
      --py-files=${PACKAGE_EGG_FILE} \
      [--properties=<spark.something.key>=<value>] \
      main.py \
      -- --template=TEMPLATENAME \
         --log_level=INFO \
         --<my.property>="<value>" \
         --<my.other.property>="<value>"
         (etc...)

Vertex AI usage:

Follow Dataproc Templates (Jupyter Notebooks) README to submit Dataproc Templates from a Vertex AI notebook.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

google-dataproc-templates-0.3.0b0.tar.gz (50.2 kB view details)

Uploaded Source

Built Distribution

google_dataproc_templates-0.3.0b0-py2.py3-none-any.whl (77.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file google-dataproc-templates-0.3.0b0.tar.gz.

File metadata

File hashes

Hashes for google-dataproc-templates-0.3.0b0.tar.gz
Algorithm Hash digest
SHA256 7b0123ea9d97aa2ce9d8a5eecb8d8821af98697a1292c07fc6ae42a1639d6786
MD5 17b6556a06f736aaf35617cb8470ef83
BLAKE2b-256 70ca0a94332ef109f20efd572a94216f8ea19286e34400b515b21c81e45de059

See more details on using hashes here.

File details

Details for the file google_dataproc_templates-0.3.0b0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for google_dataproc_templates-0.3.0b0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b1c18631223bb03b0f79a05c6dae03174b31e22ec658735b4b962b6aedcd0873
MD5 e1bc0bac4d6d3ab88716e1ea7f17cc82
BLAKE2b-256 0d0cf244c66f215cc22f01b2a003d3b22014ce5d917134e35087f7ff646d3b7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page