Skip to main content

Open Source Vizier: Distributed service framework for blackbox optimization and research.

Project description

Open Source Vizier: Reliable and Flexible Black-Box Optimization.

PyPI version Continuous Integration Docs

Google AI Blog | Getting Started | Documentation | Installation | Citing and Highlights

What is Open Source (OSS) Vizier?

OSS Vizier is a Python-based service for black-box optimization and research, based on Google Vizier, one of the first hyperparameter tuning services designed to work at scale.


OSS Vizier's distributed client-server system. Animation by Tom Small.

Getting Started

As a basic example for users, below shows how to tune a simple objective using all flat search space types:

from vizier.service import clients
from vizier.service import pyvizier as vz

# Objective function to maximize.
def evaluate(w: float, x: int, y: float, z: str) -> float:
  return w**2 - y**2 + x * ord(z)

# Algorithm, search space, and metrics.
study_config = vz.StudyConfig(algorithm='DEFAULT')
study_config.search_space.root.add_float_param('w', 0.0, 5.0)
study_config.search_space.root.add_int_param('x', -2, 2)
study_config.search_space.root.add_discrete_param('y', [0.3, 7.2])
study_config.search_space.root.add_categorical_param('z', ['a', 'g', 'k'])
study_config.metric_information.append(vz.MetricInformation('metric_name', goal=vz.ObjectiveMetricGoal.MAXIMIZE))

# Setup client and begin optimization. Vizier Service will be implicitly created.
study = clients.Study.from_study_config(study_config, owner='my_name', study_id='example')
for i in range(10):
  suggestions = study.suggest(count=2)
  for suggestion in suggestions:
    params = suggestion.parameters
    objective = evaluate(params['w'], params['x'], params['y'], params['z'])
    suggestion.complete(vz.Measurement({'metric_name': objective}))

Documentation

OSS Vizier's interface consists of three main APIs:

  • User API: Allows a user to optimize their blackbox objective and optionally setup a server for distributed multi-client settings.
  • Developer API: Defines abstractions and utilities for implementing new optimization algorithms for research and to be hosted in the service.
  • Benchmarking API: A wide collection of objective functions and methods to benchmark and compare algorithms.

Additionally, it contains advanced API for:

  • Tensorflow Probability: For writing Bayesian Optimization algorithms using Tensorflow Probability and Flax.
  • PyGlove: For large-scale evolutionary experimentation and program search using OSS Vizier as a distributed backend.

Please see OSS Vizier's ReadTheDocs documentation for detailed information.

Installation

Quick start: For tuning objectives using our state-of-the-art JAX-based Bayesian Optimizer, run:

pip install google-vizier[jax]

Advanced Installation

Minimal version: To install only the core service and client APIs from requirements.txt, run:

pip install google-vizier

Full installation: To support all algorithms and benchmarks, run:

pip install google-vizier[all]

Specific installation: If you only need a specific part "X" of OSS Vizier, run:

pip install google-vizier[X]

which installs add-ons from requirements-X.txt. Possible options:

  • requirements-jax.txt: Jax libraries shared by both algorithms and benchmarks.
  • requirements-tf.txt: Tensorflow libraries used by benchmarks.
  • requirements-algorithms.txt: Additional repositories (e.g. EvoJAX) for algorithms.
  • requirements-benchmarks.txt: Additional repositories (e.g. NASBENCH-201) for benchmarks.
  • requirements-test.txt: Libraries needed for testing code.

Check if all unit tests work by running run_tests.sh after a full installation. OSS Vizier requires Python 3.10+, while client-only packages require Python 3.8+.

Citing and Highlights

Citing Vizier: If you found this code useful, please consider citing the OSS Vizier paper as well as the Google Vizier paper.

Highlights: We track notable users and media attention - let us know if OSS Vizier was helpful for your work.

Thanks!

@inproceedings{oss_vizier,
  author    = {Xingyou Song and
               Sagi Perel and
               Chansoo Lee and
               Greg Kochanski and
               Daniel Golovin},
  title     = {Open Source Vizier: Distributed Infrastructure and API for Reliable and Flexible Black-box Optimization},
  booktitle = {Automated Machine Learning Conference, Systems Track (AutoML-Conf Systems)},
  year      = {2022},
}

@inproceedings{google_vizier,
  author    = {Daniel Golovin and
               Benjamin Solnik and
               Subhodeep Moitra and
               Greg Kochanski and
               John Karro and
               D. Sculley},
  title     = {Google Vizier: {A} Service for Black-Box Optimization},
  booktitle = {Proceedings of the 23rd {ACM} {SIGKDD} International Conference on
               Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13
               - 17, 2017},
  pages     = {1487--1495},
  publisher = {{ACM}},
  year      = {2017},
  url       = {https://doi.org/10.1145/3097983.3098043},
  doi       = {10.1145/3097983.3098043},
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file google-vizier-dev-0.1.18.dev20240806154912.tar.gz.

File metadata

File hashes

Hashes for google-vizier-dev-0.1.18.dev20240806154912.tar.gz
Algorithm Hash digest
SHA256 d41e56cd26bdfe80b321db3d28eb5944b183a603d954271438dadf07df5d7190
MD5 60bd4213aebd56f77a4378678d84bb36
BLAKE2b-256 08f638a4dff470e2b0d0285d68751f6a138bae8631561ab4c6b562bcdbeb8aa3

See more details on using hashes here.

Provenance

File details

Details for the file google_vizier_dev-0.1.18.dev20240806154912-py3-none-any.whl.

File metadata

File hashes

Hashes for google_vizier_dev-0.1.18.dev20240806154912-py3-none-any.whl
Algorithm Hash digest
SHA256 ae0f73781910eba5d980b862b06e34681873a16d40cbd61481134ce0954df42c
MD5 f637f8581b3780a27e67943166083477
BLAKE2b-256 30854362e88acf77573f317c63eb349dde5c12e1ec64519bbf6aaa7b10fb17ee

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page