Skip to main content

Gaussian processes for image analysis

Project description

Build Status Documentation Status Codacy Badge

Colab Gitpod ready-to-code

GPim

Under active development (expect some breaking changes)

What is GPim?

GPim is a python package that provides an easy way to apply Gaussian processes (GP) and GP-based Bayesian optimization to images and hyperspectral data in Pyro and Gpytorch without a need to learn those frameworks.

For the examples, see our papers:

GP for 3D hyperspectral data: https://arxiv.org/abs/1911.11348

GP for 4D hyperspectral data: https://arxiv.org/abs/2002.03591

The intended audience are domain scientists (for example, microscopists) with a basic knowledge of python.

Installation

To use it, first run:

pip install gpim

How to use

General usage

Below is a simple example of applying GPim to reconstructing a sparse 2D image. It can be similarly applied to 3D and 4D hyperspectral data. The missing data points in sparse data must be represented as NaNs. In the absense of missing observation GPim can be used for image and spectroscopic data cleaning/smoothing in all the dimensions simultaneously, as well as for the resolution enhancement. Finally, when performing measurements, one can use the information about uncertainty in GP reconstruction to select the next measurement point (more details in the notebooks referenced below).

import gpim
import numpy as np

# # Load dataset
R = np.load('sparse_exp_data.npy') 

# Get full (ideal) grid indices
X_full = gpim.utils.get_full_grid(R, dense_x=1)
# Get sparse grid indices
X_sparse = gpim.utils.get_sparse_grid(R)
# Kernel lengthscale constraints (optional)
lmin, lmax = 1., 4.
lscale = [[lmin, lmin], [lmax, lmax]] 

# Run GP reconstruction to obtain mean prediction and uncertainty for each predictied point
mean, sd, hyperparams = gpim.reconstructor(
    X_sparse, R, X_full, lengthscale=lscale,
    learning_rate=0.1, iterations=250, 
    use_gpu=True, verbose=False).run()

# Plot reconstruction results
gpim.utils.plot_reconstructed_data2d(R, mean, cmap='jet')
# Plot evolution of kernel hyperparameters during training
gpim.utils.plot_kernel_hyperparams(hyperparams)

Running GPim notebooks in the cloud

  1. Executable Google Colab notebook with the example of applying GP to sparse spiral 2D scans in piezoresponse force microscopy (PFM) and hyperspectral 3D data in Band Excitation PFM.
  2. Executable Google Colab notebook with the example of applying GP to 4D spectroscopic dataset for smoothing and resolution enhancement in contact Kelvin Probe Force Microscopy (cKPFM).
  3. Executable Google Colab notebook with a simple example of performing GP-based exploration-exploitation on a toy dataset.

Requirements

It is strongly recommended to run the codes with a GPU hardware accelerator (such as NVIDIA's P100 or V100 GPU). If you don't have a GPU on your local machine, you may rent a cloud GPU from Google Cloud AI Platform. Running the example notebooks one time from top to bottom will cost about 1 USD with a standard deep learning VM instance (one P100 GPU and 15 GB of RAM).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpim-0.2.2.tar.gz (25.0 kB view details)

Uploaded Source

Built Distribution

gpim-0.2.2-py3-none-any.whl (32.7 kB view details)

Uploaded Python 3

File details

Details for the file gpim-0.2.2.tar.gz.

File metadata

  • Download URL: gpim-0.2.2.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for gpim-0.2.2.tar.gz
Algorithm Hash digest
SHA256 0e55bbc62c7a03068c195bcbcf5d5190316932aee3a331772e2e434bd29adad7
MD5 d7442ec1456fd4dd08b455de31143487
BLAKE2b-256 c4d39d340bea254c3977605007ca5b7b5c9babcf680efa3d5c09a35a9c4fd56c

See more details on using hashes here.

File details

Details for the file gpim-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: gpim-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 32.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for gpim-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 862f1477c7a95793bc0897eb687177a91942b61e565afe2c3686574508f30ee6
MD5 d05385bae8fd7716170a5840f76713c0
BLAKE2b-256 53b8dbfe7713506978991287f650d5c5fbbd41ec0c027ff4234ef460911eda1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page