Skip to main content

Didactic Gaussian processes in Jax.

Project description

GPJax's logo

codecov CodeFactor Documentation Status PyPI version DOI Downloads Slack Invite

Quickstart | Install guide | Documentation | Slack Community

GPJax aims to provide a low-level interface to Gaussian process (GP) models in Jax, structured to give researchers maximum flexibility in extending the code to suit their own needs. The idea is that the code should be as close as possible to the maths we write on paper when working with GP models.

Package support

GPJax was founded by Thomas Pinder. Today, the maintenance of GPJax is undertaken by Thomas Pinder and Daniel Dodd.

We would be delighted to receive contributions from interested individuals and groups. To learn how you can get involved, please read our guide for contributing. If you have any questions, we encourage you to open an issue. For broader conversations, such as best GP fitting practices or questions about the mathematics of GPs, we invite you to open a discussion.

Feel free to join our Slack Channel, where we can discuss the development of GPJax and broader support for Gaussian process modelling.

Supported methods and interfaces

Notebook examples

Guides for customisation

Conversion between .ipynb and .py

Above examples are stored in examples directory in the double percent (py:percent) format. Checkout jupytext using-cli for more info.

  • To convert example.py to example.ipynb, run:
jupytext --to notebook example.py
  • To convert example.ipynb to example.py, run:
jupytext --to py:percent example.ipynb

Simple example

Let us import some dependencies and simulate a toy dataset $\mathcal{D}$.

import gpjax as gpx
from jax import grad, jit
import jax.numpy as jnp
import jax.random as jr
import jaxkern as jk
import optax as ox

key = jr.PRNGKey(123)

f = lambda x: 10 * jnp.sin(x)

n = 50
x = jr.uniform(key=key, minval=-3.0, maxval=3.0, shape=(n,1)).sort()
y = f(x) + jr.normal(key, shape=(n,1))
D = gpx.Dataset(X=x, y=y)

The function of interest here, $f(\cdot)$, is sinusoidal, but our observations of it have been perturbed by Gaussian noise. We aim to utilise a Gaussian process to try and recover this latent function.

1. Constructing the prior and posterior

We begin by defining a zero-mean Gaussian process prior with a radial basis function kernel and assume the likelihood to be Gaussian.

prior = gpx.Prior(kernel = jk.RBF())
likelihood = gpx.Gaussian(num_datapoints = n)

Similar to how we would write on paper, the posterior is constructed by the product of our prior with our likelihood.

posterior = prior * likelihood

2. Learning hyperparameters

Equipped with the posterior, we seek to learn the model's hyperparameters through gradient-optimisation of the marginal log-likelihood. We this below, adding Jax's just-in-time (JIT) compilation to accelerate training.

mll = jit(posterior.marginal_log_likelihood(D, negative=True))

For purposes of optimisation, we'll use optax's Adam.

opt = ox.adam(learning_rate=1e-3)

We define an initial parameter state through the initialise callable.

parameter_state = gpx.initialise(posterior, key=key)

Finally, we run an optimisation loop using the Adam optimiser via the fit callable.

inference_state = gpx.fit(mll, parameter_state, opt, num_iters=500)

3. Making predictions

Using our learned hyperparameters, we can obtain the posterior distribution of the latent function at novel test points.

learned_params, _ = inference_state.unpack()
xtest = jnp.linspace(-3., 3., 100).reshape(-1, 1)

latent_distribution = posterior(learned_params, D)(xtest)
predictive_distribution = likelihood(learned_params, latent_distribution)

predictive_mean = predictive_distribution.mean()
predictive_cov = predictive_distribution.covariance()

Installation

Stable version

The latest stable version of GPJax can be installed via pip:

pip install gpjax

Note

We recommend you check your installation version:

python -c 'import gpjax; print(gpjax.__version__)'

Development version

Warning

This version is possibly unstable and may contain bugs.

Clone a copy of the repository to your local machine and run the setup configuration in development mode.

git clone https://github.com/JaxGaussianProcesses/GPJax.git
cd GPJax
python setup.py develop

Note

We advise you create virtual environment before installing:

conda create -n gpjax_experimental python=3.10.0
conda activate gpjax_experimental

and recommend you check your installation passes the supplied unit tests:

python -m pytest tests/

Citing GPJax

If you use GPJax in your research, please cite our JOSS paper.

@article{Pinder2022,
  doi = {10.21105/joss.04455},
  url = {https://doi.org/10.21105/joss.04455},
  year = {2022},
  publisher = {The Open Journal},
  volume = {7},
  number = {75},
  pages = {4455},
  author = {Thomas Pinder and Daniel Dodd},
  title = {GPJax: A Gaussian Process Framework in JAX},
  journal = {Journal of Open Source Software}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpjax-nightly-0.5.9.dev20230226.tar.gz (60.8 kB view details)

Uploaded Source

Built Distribution

gpjax_nightly-0.5.9.dev20230226-py3-none-any.whl (48.0 kB view details)

Uploaded Python 3

File details

Details for the file gpjax-nightly-0.5.9.dev20230226.tar.gz.

File metadata

File hashes

Hashes for gpjax-nightly-0.5.9.dev20230226.tar.gz
Algorithm Hash digest
SHA256 2fdf0a6867520df6e5929458ddbc6d54f0dfa374d162e92d1bc01eb1dd6f8fa8
MD5 0796a6603cc2413c0cc570ff7035b7a7
BLAKE2b-256 24fb97aec079a1a4fdc729dde4e00e26de284eae9d54f2125b8daadbee88dbbd

See more details on using hashes here.

File details

Details for the file gpjax_nightly-0.5.9.dev20230226-py3-none-any.whl.

File metadata

File hashes

Hashes for gpjax_nightly-0.5.9.dev20230226-py3-none-any.whl
Algorithm Hash digest
SHA256 811f8e6aa87a57e73b455e5319d9cb50f0c46dde8e3d6c3ff071343d0a6262a5
MD5 2e86a6834878206ec7614ab6504642c6
BLAKE2b-256 192c4fbf808ad92b7538b2f41da2e1bde27ac4cd289272411b94bc4488b15c5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page