Skip to main content

Image generators from the Magenta project

Project description



Models
######

magenta-arbitrary-stylize
#########################

*Fast artistic style transfer using arbitrary painting styles*

Operations
==========

generate
^^^^^^^^

*Generate a stylized using model pretrained on PNB and DRD images*

Flags
-----

**content-images**
*Path to content images (include glob pattern matching images) (required)*

**image-size**
*Size of images (default is 1024)*

**interpolation-weights**
*Interpolation weights (default is '[1.0]')

This value is a list of float values inside square brackets. Each value is
a weight for interpolation between the parameters of the identity
transform and the style parameters of the style image.

The larger the weight is the strength of stylization is more. Weight of
1.0 means the normal style transfer and weight of 0.0 means identity
transform. ? *

**style-images**
*Path to style images (include glob pattern matching images) (required)*

References
==========

- https://github.com/tensorflow/magenta/tree/master/magenta/models/arbitrary_image_stylization
- https://arxiv.org/abs/1705.06830
- https://arxiv.org/abs/1610.07629
- https://arxiv.org/abs/1603.08155
- https://arxiv.org/abs/1508.06576

magenta-image-stylize
#####################

*Implementation of 'A Learned Representation for Artistic Style'*

Operations
==========

generate
^^^^^^^^

*Generate a stylized image using a pretrained models*

Flags
-----

**image**
*Image to stylize (required)*

**style**
*Style to apply (monet or varied) (required)

Choices:
monet Use Monet style
varied Use varied style

*

References
==========

- https://github.com/tensorflow/magenta/tree/master/magenta/models/image_stylization
- https://arxiv.org/abs/1610.07629


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
gpkg.magenta.image-0.4.0-py2.py3-none-any.whl (5.5 kB) Copy SHA256 hash SHA256 Wheel py2.py3 Jul 26, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page