Skip to main content

Genetic Programming in Python, with a scikit-learn inspired API

Project description

Version License Documentation Status Test Status Test Coverage Code Health

Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn!

gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API.

While Genetic Programming (GP) can be used to perform a very wide variety of tasks, gplearn is purposefully constrained to solving symbolic regression problems. This is motivated by the scikit-learn ethos, of having powerful estimators that are straight-forward to implement.

Symbolic regression is a machine learning technique that aims to identify an underlying mathematical expression that best describes a relationship. It begins by building a population of naive random formulas to represent a relationship between known independent variables and their dependent variable targets in order to predict new data. Each successive generation of programs is then evolved from the one that came before it by selecting the fittest individuals from the population to undergo genetic operations.

gplearn retains the familiar scikit-learn fit/predict API and works with the existing scikit-learn pipeline and grid search modules. The package attempts to squeeze a lot of functionality into a scikit-learn-style API. While there are a lot of parameters to tweak, reading the documentation should make the more relevant ones clear for your problem.

gplearn supports regression through the SymbolicRegressor, binary classification with the SymbolicClassifier, as well as transformation for automated feature engineering with the SymbolicTransformer, which is designed to support regression problems, but should also work for binary classification.

gplearn is built on scikit-learn and a fairly recent copy is required for installation. If you come across any issues in running or installing the package, please submit a bug report.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gplearn_biaowang-0.5.dev0.tar.gz (25.9 kB view details)

Uploaded Source

File details

Details for the file gplearn_biaowang-0.5.dev0.tar.gz.

File metadata

  • Download URL: gplearn_biaowang-0.5.dev0.tar.gz
  • Upload date:
  • Size: 25.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for gplearn_biaowang-0.5.dev0.tar.gz
Algorithm Hash digest
SHA256 0b49ea9a790c235bcc7056b2811f763c3a775a944bf6d009bf311644e7bf8022
MD5 50bdb8bcd60850a25d59184c33058759
BLAKE2b-256 8b0718f2bc5a19cc09d94a273ac46fe95093a3576b956043e8b3aec49dc72b96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page