Skip to main content

Python library for Gaussian Process Regression.

Project description

GPlib

A python library for Gaussian Process Regression.

Setup GPlib

  • Create and activate virtualenv (for python2) or venv (for python3)

    # for python3
    python3 -m venv .env
    # or for python2
    python2 -m virtualenv .env
    
    source .env/bin/activate
    
  • Upgrade pip

    python -m pip install --upgrade pip
    
  • Install GPlib package

    python -m pip install gplib
    
  • Matplotlib requires to install a backend to work interactively (See https://matplotlib.org/faq/virtualenv_faq.html). The easiest solution is to install the Tk framework, which can be found as python-tk (or python3-tk) on certain Linux distributions.

Use GPlib

  • Import GPlib to use it in your python script.

    import gplib
    
  • Initialize the GP with the desired modules.

    gp = gplib.GP(
        mean_function=gplib.mea.Fixed(),
        covariance_function=gplib.ker.SquaredExponential()
    )
    
  • Plot the GP.

    gplib.plot.gp_1d(gp, n_samples=10)
    
  • Generate some random data.

    import numpy as np
    data = {
        'X': np.arange(3, 8, 1.0)[:, None],
        'Y': np.random.uniform(0, 2, 5)[:, None]
    }
    
  • Get the posterior GP given the data.

    posterior_gp = gp.get_posterior(data)
    
  • Finally plot the posterior GP.

    gplib.plot.gp_1d(posterior_gp, data, n_samples=10)
    
  • There are more examples in examples/ directory. Check them out!

Develop GPlib

  • Download the repository using git

    git clone https://gitlab.com/ibaidev/gplib.git
    
  • Update API documentation

    source ./.env/bin/activate
    pip install Sphinx
    cd docs/
    sphinx-apidoc -f -o ./ ../gplib
    

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gplib-0.17.3.tar.gz (44.8 kB view details)

Uploaded Source

Built Distribution

gplib-0.17.3-py3-none-any.whl (89.8 kB view details)

Uploaded Python 3

File details

Details for the file gplib-0.17.3.tar.gz.

File metadata

  • Download URL: gplib-0.17.3.tar.gz
  • Upload date:
  • Size: 44.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for gplib-0.17.3.tar.gz
Algorithm Hash digest
SHA256 b9f6c2aa6177a5d4a233acdeb113e7ece90449f4946924397f650ca1120dc05a
MD5 3a54bbd588df3750990040572619b2b3
BLAKE2b-256 a75568b3da89f561ce06a1cd0bbbe563caaf6379cca5c51339fa04a0e1b2fd9a

See more details on using hashes here.

File details

Details for the file gplib-0.17.3-py3-none-any.whl.

File metadata

  • Download URL: gplib-0.17.3-py3-none-any.whl
  • Upload date:
  • Size: 89.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for gplib-0.17.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d7871770ce448171e16dd0bc45c177f813d0a303b50a1c2126bb5902dd1a6207
MD5 27b9b9c64ada0f656cf9307fcaf92cd4
BLAKE2b-256 ecb292f4b8969daba8c3d33b56d41198eec0b581ee8a0ad9cc0f930d7242c2a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page