Skip to main content

Python library for Gaussian Process Regression.

Project description

A python library for Gaussian Process Regression.

Setup GPlib

  • The following packages must be installed before installing GPlib
# for ptyhon3
apt-get install python3-tk
# or for python2
apt-get install python-tk
  • Create and activate virtualenv (for python2) or venv (for ptyhon3)
# for ptyhon3
python3 -m venv --system-site-packages .env
# or for python2
virtualenv --system-site-packages .env

source .env/bin/activate
  • Upgrade pip
# for ptyhon3
python3 -m pip install --upgrade pip
# or for python2
python -m pip install --upgrade pip
  • Install GPlib package
python -m pip install gplib

Use GPlib

  • Generate some random data.
import numpy as np
data = {
  'X': np.arange(3, 8, 1.0)[:, None],
  'Y': np.random.uniform(0, 2, 5)[:, None]
  • Import GPlib to use it in your python script.
import gplib
  • Initialize the GP with the desired modules.
gp = gplib.GP(
  covariance_function=gplib.cov.SquaredExponential(data, is_ard=False),
  • Plot the GP and the data.
gplib.plot.gp_1d(gp, data, n_samples=10)
  • Get the posterior GP given the data.
posterior_gp = gp.get_posterior(data)
  • Finally plot the posterior GP.
gplib.plot.gp_1d(posterior_gp, data, n_samples=10)
  • There are more examples in examples/ directory. Check them out!

Develop GPlib

  • Download the repository using git
git clone
cd gplib
git config 'MAIL'
git config 'NAME'
git config credential.helper 'cache --timeout=300'
git config push.default simple
  • Update API documentation
source ./.env/bin/activate
pip install Sphinx
cd docs/
sphinx-apidoc -f -o ./ ../gplib

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
gplib-0.8.10-py2.py3-none-any.whl (67.6 kB) Copy SHA256 hash SHA256 Wheel py2.py3
gplib-0.8.10.tar.gz (31.1 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page