Skip to main content

Python library for Gaussian Process Regression.

Project description

GPlib

A python library for Gaussian Process Regression.

Setup GPlib

  • Create and activate virtualenv (for python2) or venv (for python3)
  # for python3
  python3 -m venv .env
  # or for python2
  python2 -m virtualenv .env

  source .env/bin/activate
  • Upgrade pip
  python -m pip install --upgrade pip
  • Install GPlib package
  python -m pip install gplib
  • Matplotlib requires to install a backend to work interactively (See https://matplotlib.org/faq/virtualenv_faq.html). The easiest solution is to install the Tk framework, which can be found as python-tk (or python3-tk) on certain Linux distributions.

Use GPlib

  • Import GPlib to use it in your python script.
  import gplib
  • Initialize the GP with the desired modules.
  gp = gplib.GP(
    mean_function=gplib.mea.Fixed(),
    covariance_function=gplib.ker.SquaredExponential()
  )
  • Plot the GP.
  gplib.plot.gp_1d(gp, n_samples=10)
  • Generate some random data.
  import numpy as np
  data = {
    'X': np.arange(3, 8, 1.0)[:, None],
    'Y': np.random.uniform(0, 2, 5)[:, None]
  }
  • Get the posterior GP given the data.
  posterior_gp = gp.get_posterior(data)
  • Finally plot the posterior GP.
  gplib.plot.gp_1d(posterior_gp, data, n_samples=10)
  • There are more examples in examples/ directory. Check them out!

Develop GPlib

  • Download the repository using git
  git clone https://gitlab.com/ibaidev/gplib.git
  • Update API documentation
  source ./.env/bin/activate
  pip install Sphinx
  cd docs/
  sphinx-apidoc -f -o ./ ../gplib

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gplib-0.17.0.tar.gz (35.5 kB view hashes)

Uploaded Source

Built Distribution

gplib-0.17.0-py2.py3-none-any.whl (77.5 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page