Python library for Gaussian Process Regression.
Project description
GPlib
A python library for Gaussian Process Regression.
Setup GPlib
- Create and activate virtualenv (for python2) or venv (for python3)
# for python3
python3 -m venv .env
# or for python2
python2 -m virtualenv .env
source .env/bin/activate
- Upgrade pip
python -m pip install --upgrade pip
- Install GPlib package
python -m pip install gplib
- Matplotlib requires to install a backend to work interactively (See https://matplotlib.org/faq/virtualenv_faq.html). The easiest solution is to install the Tk framework, which can be found as python-tk (or python3-tk) on certain Linux distributions.
Use GPlib
- Import GPlib to use it in your python script.
import gplib
- Initialize the GP with the desired modules.
gp = gplib.GP(
mean_function=gplib.mea.Fixed(),
covariance_function=gplib.ker.SquaredExponential()
)
- Plot the GP.
gplib.plot.gp_1d(gp, n_samples=10)
- Generate some random data.
import numpy as np
data = {
'X': np.arange(3, 8, 1.0)[:, None],
'Y': np.random.uniform(0, 2, 5)[:, None]
}
- Get the posterior GP given the data.
posterior_gp = gp.get_posterior(data)
- Finally plot the posterior GP.
gplib.plot.gp_1d(posterior_gp, data, n_samples=10)
- There are more examples in examples/ directory. Check them out!
Develop GPlib
- Download the repository using git
git clone https://gitlab.com/ibaidev/gplib.git
- Update API documentation
source ./.env/bin/activate
pip install Sphinx
cd docs/
sphinx-apidoc -f -o ./ ../gplib
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gplib-0.17.0.tar.gz
(35.5 kB
view hashes)
Built Distribution
gplib-0.17.0-py2.py3-none-any.whl
(77.5 kB
view hashes)
Close
Hashes for gplib-0.17.0-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 32bac90da2c7b5d5d03bf68ab47ea251209aad679796dfb4d711a3484e837177 |
|
MD5 | a83dac2edf253eaf263cc1f60a744ad4 |
|
BLAKE2b-256 | 48d4f99c41fb141191b20864ad5eec41e75f79f2b7082108c91794eccbff5b82 |