Python library for Gaussian Process Regression.
Project description
GPlib
A python library for Gaussian Process Regression.
Setup GPlib
The following packages must be installed before installing GPlib
# for ptyhon3
apt-get install python3-tk
# or for python2
apt-get install python-tk
Create and activate virtualenv (for python2) or venv (for ptyhon3)
# for ptyhon3
python3 -m venv --system-site-packages .env
# or for python2
virtualenv --system-site-packages .env
source .env/bin/activate
Upgrade pip
# for ptyhon3
python3 -m pip install --upgrade pip
# or for python2
python -m pip install --upgrade pip
Install GPlib package
python -m pip install gplib
Use GPlib
Generate some random data.
import numpy as np
data = {
'X': np.arange(3, 8, 1.0)[:, None],
'Y': np.random.uniform(0, 2, 5)[:, None]
}
Import GPlib to use it in your python script.
import gplib
Initialize the GP with the desired modules.
gp = gplib.GP(
mean_function=gplib.mea.Constant(data),
covariance_function=gplib.cov.SquaredExponential(data, is_ard=False),
likelihood_function=gplib.lik.Gaussian(is_noisy=True),
inference_method=gplib.inf.ExactGaussian()
)
Plot the GP and the data.
gplib.plot.gp_1d(gp, data)
Get the posterior GP given the data.
posterior_gp = gp.get_posterior(data)
Finally plot the posterior GP.
gplib.plot.gp_1d(posterior_gp, data)
There are more examples in examples/ directory. Check them out!
Develop GPlib
Download the repository using git
git clone https://github.com/ibaidev/gplib.git
cd gplib
git config user.email 'MAIL'
git config user.name 'NAME'
git config credential.helper 'cache --timeout=300'
git config push.default simple
Update API documentation
source ./.env/bin/activate
pip install Sphinx
cd docs/
sphinx-apidoc -f -o ./ ../gplib
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gplib-0.5.13.tar.gz
(30.1 kB
view hashes)
Built Distribution
gplib-0.5.13-py2.py3-none-any.whl
(47.4 kB
view hashes)
Close
Hashes for gplib-0.5.13-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ddde490a55c4140e80ba7368e9b15526532869456755b08e4726fd2f4d9f0bf3 |
|
MD5 | 3f3b3265d7ddf7750c1da5b7924c2b5a |
|
BLAKE2b-256 | ab387b6c9a54af2828d6ec283e6466b916d07e48843dc643558a8dbe180c50df |