Python API to infer missing data in sparsely sampled genotype-phenotype maps.
Project description
GPSeer
Simple software for inferring missing data in sparsely measured genotype-phenotype maps
Basic Usage
Install gpseer using pip:
pip install gpseer
To use as a command line, call gpseer
on an input .csv
file containing genotype-phenotype data.
The API Demo.ipynb demonstrates how to use GPSeer in a Jupyter notebook.
Downloading the example
To get started, use GPSeer's fetch-example
command to download an example from its Github repo.
Download the gpseer example and explore the example input data:
# fetch data from Github page.
> gpseer fetch-example
[GPSeer] Downloading files to /examples...
[GPSeer] └──>: 100%|██████████████████| 3/3 [00:00<00:00, 9.16it/s]
[GPSeer] └──> Done!
# Change into the example directory and checkout the files that were downloaded
> cd examples/
> ls
API Demo.ipynb
example-full.csv
example-test.csv
example-train.csv
Generate Dataset.ipynb
genotypes.txt
pfcrt-raw-data.csv
Predicting missing data using ML model.
Estimate the maximum likelihood additive model on the training set and predict all missing genotypes. The predictions will be written to a file named "example-train_predictions.csv"
.
> gpseer estimate-ml example-train.csv
[GPSeer] Reading data from example-train.csv...
[GPSeer] └──> Done reading data.
[GPSeer] Constructing a model...
[GPSeer] └──> Done constructing model.
[GPSeer] Fitting data...
[GPSeer] └──> Done fitting data.
[GPSeer] Predicting missing data...
[GPSeer] └──> Done predicting.
[GPSeer] Calculating fit statistics...
[GPSeer]
Fit statistics:
---------------
parameter value
0 num_genotypes 128
1 num_unique_mutations 8
2 explained_variation 0.985186
3 num_parameters 9
4 num_obs_to_converge 2.82714
5 threshold None
6 spline_order None
7 spline_smoothness None
8 epistasis_order 1
[GPSeer]
Convergence:
------------
mutation num_obs num_obs_above fold_target converged
0 F0K 64 64 22.637735 True
1 S1Y 69 69 24.406308 True
2 Q2T 63 63 22.284020 True
3 R3V 70 70 24.760023 True
4 N4D 62 62 21.930306 True
5 A5C 69 69 24.406308 True
6 C6D 65 65 22.991450 True
7 C7A 64 64 22.637735 True
[GPSeer] └──> Done.
[GPSeer] Writing phenotypes to example-train_predictions.csv...
[GPSeer] └──> Done writing predictions!
[GPSeer] Writing plots...
[GPSeer] Writing example-train_correlation-plot.pdf...
[GPSeer] Writing example-train_phenotype-histograms.pdf...
[GPSeer] └──> Done plotting!
[GPSeer] GPSeer finished!
Compute the predictive power of the model by cross-validation
Estimate how well your model is predicting data using the "cross-validate" subcommand. Try the example below where we generate 100 subsets from the data and compute your prediction scores.
> gpseer cross-fit example-test.csv
[GPSeer] Reading data from example-train.csv...
[GPSeer] └──> Done reading data.
[GPSeer] Fitting all data data...
[GPSeer] └──> Done fitting data.
[GPSeer] Sampling the data...
[GPSeer] └──>: 100%|████████████████████| 100/100 [00:03<00:00, 25.90it/s]
[GPSeer] └──> Done sampling data.
[GPSeer] Plotting example-train_cross-validation-plot.pdf...
[GPSeer] └──> Done writing data.
[GPSeer] Writing scores to example-train_cross-validation-scores.csv...
[GPSeer] └──> Done writing data
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.