GPT-3 wrapper for Python
Project description
gpt3-simple-primer
Simple GPT-3 primer using openai
.
Background
Generative Pre-trained Transformer 3 (GPT-3) is an autoregressive language model that uses deep learning to produce human-like text. For more information, visit https://openai.com/blog/openai-api/.
The OpenAI Python library is the official Python wrapper for the OpenAI API. The purpose of this library is to simplify the priming process by providing easy to use methods for setting the instructions and adding examples.
Priming
Priming is the practice of providing an initial prompt to the language model to improve subsequent model predictions.
GPT-3 generally does very well even with short instructions and a few examples of your intended use case. Examples are typically delimited based on input and output. For instance, GPT-3 can be used to predict food ingredients based on the following prompt:
Given the name of a food, list the ingredients used to make this meal.
Food: apple pie
Ingredients: apple, butter, flour, egg, cinnamon, crust, sugar
Food: guacamole
Ingredients: avocado, tomato, onion, lime, salt
Requirements
You will need an API key from OpenAI to access GPT-3.
Installation
To install, run:
pip install gpt3-simple-primer
Usage
input_text
and output_text
determines how input and output are delimited in the examples. The default is to use Input
and Output
.
from gpt3_simple_primer import GPT3Generator, set_api_key
KEY = 'sk-xxxxx' # openai key
set_api_key(KEY)
generator = GPT3Generator(input_text='Food',
output_text='Ingredients')
generator.set_instructions('List the ingredients for this meal.')
generator.add_example('apple pie', 'apple, butter, flour, egg, cinnamon, crust, sugar')
generator.add_example('guacamole', 'avocado, tomato, onion, lime, salt')
# Ingredients: cream, egg yolk, sugar, lime, key lime juice
generator.generate(prompt='key lime pie',
engine='davinci',
max_tokens=20,
temperature=0.5,
top_p=1)
To see the prompt used for priming:
generator.get_prompt()
To remove an example from the prompt:
generator.remove_example('apple pie')
Examples
The library includes examples of GPT-3 applications based off of specific prompts.
from gpt3_simple_primer import set_api_key
from gpt3_simple_primer.examples import idiom_explainer
KEY = 'sk-xxxxx' # openai key
set_api_key(KEY)
idiom_explainer.generate('hill to die on', max_tokens=15, engine='davinci')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gpt3_simple_primer-0.1.2.tar.gz
.
File metadata
- Download URL: gpt3_simple_primer-0.1.2.tar.gz
- Upload date:
- Size: 5.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9f997a6e0d69988ee4e02a70ec1cf34c5041555603bd4d21b46a892a1b0d252 |
|
MD5 | 4846370d5c8719d93545c7f2f5667503 |
|
BLAKE2b-256 | 93b747e32af4f928a355c2f87697ba5fd030939e1b2f9e795761c9fe93ee0db8 |
File details
Details for the file gpt3_simple_primer-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: gpt3_simple_primer-0.1.2-py3-none-any.whl
- Upload date:
- Size: 5.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c1a656f513fa9a9739b17099c7a6d66e54050c1059557aff0cf4971658a9f5f |
|
MD5 | 7a271cbfa46c08fa88fc726b2f46d4a2 |
|
BLAKE2b-256 | 9c54e83b8c912a8bb3bc291a1cdb6cd68ab4e5754ab5d28af011b6f63af5917e |