A decorator for wrapping Python functions to generate an OpenAI GPT function calling schema.
Project description
Overview
The GPTFunction
Python module provides a decorator for wrapping Python functions to generate an OpenAI GPT function calling schema. This module is particularly useful for those who need to integrate Python functions with GPT in a structured and efficient manner. The decorator transforms a regular Python function into a GPT function with a JSON schema, which can then be utilized by GPT for various purposes.
Features
- Type Hinting and Documentation: The module enforces type hinting for parameters, supporting types like
str
,int
,float
,typing.Literal
, and subclasses ofEnum
. - Docstring Parsing: It parses the function's docstring to extract descriptions, ensuring a detailed and clear schema.
- Automatic Schema Generation: Generates the necessary schema for GPT integration seamlessly.
Installation
pip install gptfunction
Usage
Basic Example
from gptfunction import gptfunction
@gptfunction
def output_user(name: str, age: int) -> None:
"""
Outputs a user's name and age to the console.
:param name: The name of the user.
:param age: The age of the user.
"""
print(f"Name: {name}, Age: {age}")
gpt_tools = [output_user.schema()]
Advanced Usage with Enums and Literals
from gptfunction import gptfunction
from enum import Enum
from typing import Literal
class Fruit(Enum):
APPLE = 'apple'
BANANA = 'banana'
@gptfunction
def favorite_fruit(user_name: str, fruit: Fruit, quantity: Literal[1, 2, 3]) -> str:
"""
Returns a string stating the user's favorite fruit and quantity.
:param user_name: Name of the user.
:param fruit: The preferred fruit.
:param quantity: The quantity preferred (1, 2, or 3).
:return: A descriptive string.
"""
return f"{user_name} likes {quantity} {fruit.value}(s)."
print(favorite_fruit.schema())
Documentation
Parameter Types
str
: For string values.int
: For integer values.float
: For floating-point values.typing.Literal
: For specifying a literal set of values.Enum
: For enumerated types, with string values as Enum members.
Decorator
@gptfunction
: This decorator should be used above the function definition. It processes the function and creates a GPT function schema.
Methods
schema(use_required: bool)
: Returns the JSON schema of the wrapped function.- use_required: Indicates whether the schema should specify required parameters (default: True).
description()
: Retrieves the function's description from its docstring.name()
: Returns the name of the function.
Contributing
Contributions to improve GPTFunction
are welcome. Please follow the standard procedures for submitting issues and pull requests on the project's GitHub repository.
License
Distributed under the MIT License. See LICENSE
for more information.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file gptfunction-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: gptfunction-0.2.0-py3-none-any.whl
- Upload date:
- Size: 6.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ff95a37e99c446736ced4f264ec03d13306b66a865c1ad645ed1ccae923d9e6 |
|
MD5 | 8791617d27a781a8de085ec6d0f417d4 |
|
BLAKE2b-256 | b4a46f789123f279e74393b88f46b89719df4584f4ffcc340e4d36efe79e7772 |