This package simplifies your interaction with various GPT models, removing the need for tokens or other methods to access GPT
Project description
GPTI
This package simplifies your interaction with various GPT models, eliminating the need for tokens or other methods to access GPT. It also allows you to use three artificial intelligences to generate images: DALL·E, Prodia and more, all of this without restrictions or limits
Installation
You can install the package via PIP
pip install gpti
Available Models
GPTI provides access to a variety of artificial intelligence models to meet various needs. Currently, the available models include:
Api key
If you want to access the premium models, enter your credentials. You can obtain them by clicking here.
from gpti import nexra
nexra("user-xxxxxxxx", "nx-xxxxxxx-xxxxx-xxxxx");
Usage GPT
import json
from gpti import gpt
res = gpt.v1(messages=[
{
"role": "assistant",
"content": "Hello! How are you today?"
},
{
"role": "user",
"content": "Hello, my name is Yandri."
},
{
"role": "assistant",
"content": "Hello, Yandri! How are you today?"
}
], prompt="Can you repeat my name?", model="GPT-4", markdown=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
Models
Select one of these available models in the API to enhance your experience.
- gpt-4
- gpt-4-0613
- gpt-4-32k
- gpt-4-0314
- gpt-4-32k-0314
- gpt-3.5-turbo
- gpt-3.5-turbo-16k
- gpt-3.5-turbo-0613
- gpt-3.5-turbo-16k-0613
- gpt-3.5-turbo-0301
- text-davinci-003
- text-davinci-002
- code-davinci-002
- gpt-3
- text-curie-001
- text-babbage-001
- text-ada-001
- davinci
- curie
- babbage
- ada
- babbage-002
- davinci-002
Usage GPT v2
It's quite similar, with the difference that it has the capability to generate real-time responses via streaming using gpt-3.5-turbo.
import json
from gpti import gpt
res = gpt.v2(messages=[
{
"role": "assistant",
"content": "Hello! How are you today?"
},
{
"role": "user",
"content": "Hello, my name is Yandri."
},
{
"role": "assistant",
"content": "Hello, Yandri! How are you today?"
},
{
"role": "user",
"content": "Can you repeat my name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
Usage GPT v2 Streaming
import json
from gpti import gpt
res = gpt.v2(messages=[
{
"role": "assistant",
"content": "Hello! How are you today?"
},
{
"role": "user",
"content": "Hello, my name is Yandri."
},
{
"role": "assistant",
"content": "Hello, Yandri! How are you today?"
},
{
"role": "user",
"content": "Can you repeat my name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
for chunk in res.stream():
print(json.dumps(chunk))
Usage GPT Web
GPT-4 has been enhanced by me, but errors may arise due to technological complexity. It is advisable to exercise caution when relying entirely on its accuracy for online queries.
import json
from gpti import gpt
res = gpt.web(prompt="Are you familiar with the movie Wonka released in 2023?", markdown=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
Usage GPT-4o
import json
from gpti import gpt
res = gpt.v3(messages=[
{
"role": "assistant",
"content": "Hello! How are you today?"
},
{
"role": "user",
"content": "Hello, my name is Yandri."
},
{
"role": "assistant",
"content": "Hello, Yandri! How are you today?"
},
{
"role": "user",
"content": "Can you repeat my name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
Usage GPT-4o Streaming
import json
from gpti import gpt
res = gpt.v3(messages=[
{
"role": "assistant",
"content": "Hello! How are you today?"
},
{
"role": "user",
"content": "Hello, my name is Yandri."
},
{
"role": "assistant",
"content": "Hello, Yandri! How are you today?"
},
{
"role": "user",
"content": "Can you repeat my name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
for chunk in res.stream():
print(json.dumps(chunk))
Usage Bing
import json
from gpti import bing
res = bing(messages=[
{
"role" => "assistant",
"content" => "Hello! How can I help you today? 😊"
},
{
"role": "user",
"content": "Can you tell me how many movies you've told me about?"
}
], conversation_style="Balanced", markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
Usage Bing Streaming
import json
from gpti import bing
res = bing(messages=[
{
"role" => "assistant",
"content" => "Hello! How can I help you today? 😊"
},
{
"role": "user",
"content": "Can you tell me how many movies you've told me about?"
}
], conversation_style="Balanced", markdown=False, stream=True)
if res.error() != None:
print(json.dumps(res.error()))
else:
for chunk in res.stream():
print(json.dumps(chunk))
Parameters
Parameter | Default | Description |
---|---|---|
conversation_style | Balanced | You can use between: "Balanced", "Creative" and "Precise" |
markdown | false | You can convert the dialogues into continuous streams or not into Markdown |
stream | false | You are given the option to choose whether you prefer the responses to be in real-time or not |
Usage LLaMA 3.1
import json
from gpti import llama
res = llama(messages=[
{
"role": "user",
"content": "Hello! How are you? Could you tell me your name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
Usage LLaMA 3.1 Streaming
import json
from gpti import llama
res = llama(messages=[
{
"role": "user",
"content": "Hello! How are you? Could you tell me your name?"
}
], markdown=False, stream=True)
if res.error() != None:
print(json.dumps(res.error()))
else:
for chunk in res.stream():
print(json.dumps(chunk))
Usage Blackbox
import json
from gpti import blackbox
res = blackbox(messages=[
{
"role": "user",
"content": "Hello! How are you? Could you tell me your name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
Usage Blackbox Streaming
import json
from gpti import blackbox
res = blackbox(messages=[
{
"role": "user",
"content": "Hello! How are you? Could you tell me your name?"
}
], markdown=False, stream=True)
if res.error() != None:
print(json.dumps(res.error()))
else:
for chunk in res.stream():
print(json.dumps(chunk))
AI Images
import json
from gpti import imageai
res = imageai(prompt="cat color red", model="dalle", response="url" | "base64", data={})
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
API Reference
Currently, some models require your credentials to access them, while others are free. For more details and examples, please refer to the complete documentation.
Code Errors
These are the error codes that will be presented in case the API fails.
Code | Error | Description |
---|---|---|
400 | BAD_REQUEST | Not all parameters have been entered correctly |
500 | INTERNAL_SERVER_ERROR | The server has experienced failures |
200 | The API worked without issues | |
403 | FORBIDDEN | Your API key has expired and needs to be renewed |
401 | UNAUTHORIZED | API credentials are required |
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gpti-2.1.tar.gz
.
File metadata
- Download URL: gpti-2.1.tar.gz
- Upload date:
- Size: 9.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bcc6d50250edc2e6213117238b2945f97ebe4701df8b438b3305015a77699d85 |
|
MD5 | 2830a542bb371cb2d21fde994e4e6302 |
|
BLAKE2b-256 | 51298dfe15f5b30e5f42c70ffe873817706e5e05874b4da5c6d1ca607927294c |
File details
Details for the file gpti-2.1-py3-none-any.whl
.
File metadata
- Download URL: gpti-2.1-py3-none-any.whl
- Upload date:
- Size: 7.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a3703948295533fe5513991acadcacab2436bda5902ee14a5be4e0719ff5968e |
|
MD5 | c6db66b5d96fb43a81eacb6862a12fbd |
|
BLAKE2b-256 | 0f2c965b99cc3190d9b38a1c306a2e9bb84937624e80790c6a39925a3e816bac |