Skip to main content

Gaussian process regression with derivative constraints and predictions.

Project description

Gaussian processes with arbitrary derivative constraints and predictions.

gptools is a Python package that provides a convenient, powerful and extensible implementation of Gaussian process regression (GPR). Central to gptool’s implementation is support for derivatives and their variances. Furthermore, the implementation supports the incorporation of arbitrary linearly transformed quantities into the GP.

Developed and tested using Python 2.7 and scipy 0.14.0. May work with other versions, but it has not been tested under such configurations.

Full package documentation is located at

A printable PDF is available at

Releases are available in PyPI at

To install, simply execute:

pip install gptools

(You must already have NumPy and Cython installed for this to work.)

If you find this software useful, please be sure to cite it:

M.A. Chilenski et al. 2015 Nucl. Fusion 55 023012

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gptools-0.2.3.tar.gz (1.4 MB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page