Skip to main content

watchmen for GPU scheduling

Project description

watchmen

A simple and easy-to-use toolkit for GPU scheduling.

Dependencies

  • Python >= 3.6
    • requests >= 2.24.0
    • pydantic >= 1.7.1
    • gpustat >= 0.6.0
    • flask >= 1.1.2
    • apscheduler >= 3.6.3

Installation

  1. Install dependencies.
$ pip install -r requirements.txt
  1. Install watchmen.

Install from source code:

$ pip install -e .

Or you can install the stable version package from pypi.

$ pip install gpu-watchmen -i https://pypi.org/simple

Quick Start

  1. Start the server

The default port of the server is 62333

$ python -m watchmen.server

If you want the server to be running backend, try:

$ nohup python -m watchmen.server &

There are some configurations for the server

usage: server.py [-h] [--host HOST] [--port PORT]
                 [--queue_timeout QUEUE_TIMEOUT]
                 [--request_interval REQUEST_INTERVAL]
                 [--status_queue_keep_time STATUS_QUEUE_KEEP_TIME]

optional arguments:
  -h, --help            show this help message and exit
  --host HOST           host address for api server
  --port PORT           port for api server
  --queue_timeout QUEUE_TIMEOUT
                        timeout for queue waiting (seconds)
  --request_interval REQUEST_INTERVAL
                        interval for gpu status requesting (seconds)
  --status_queue_keep_time STATUS_QUEUE_KEEP_TIME
                        hours for keeping the client status
  1. Modify the source code in your project:
from watchmen import WatchClient

client = WatchClient(id="short description of this running", gpus=[1],
                     server_host="127.0.0.1", server_port=62333)
client.wait()

When the program goes on after client.wait(), you are in the queue. You can check examples in example/ for further reading.

$ cd example && python single_card_mnist.py --id="single" --cuda=0 --wait
# queue mode
$ cd example && python multi_card_mnist.py --id="multi" --cuda=2,3 --wait
# schedule mode
$ cd example && python multi_card_mnist.py --id='multi card scheduling wait' --cuda=1,0,3 --req_gpu_num=2 --wait=schedule
  1. Check the queue in browser.

Open the following link to your browser: http://<server ip address>:<server port>, for example: http://192.168.126.143:62333.

And you can get a result like the demo below. Please be aware that the page is not going to change dynamically, so you can refresh the page manually to check the latest status.

New Demo (scheduling mode supported)

Demo

Old Demo (queue mode supported)

Old Demo

  1. Reminder when program is finished.

watchmen also support email and other kinds of reminders for message informing. For example, you can send yourself an email when the program is finished.

from watchmen.reminder import send_email

... # your code here

send_email(
    host="smtp.163.com", # email host to login, like `smtp.163.com`
    port=25, # email port to login, like `25`
    user="***@163.com", # user email address for login, like `***@163.com`
    password="***", # password or auth code for login
    receiver="***@outlook.com", # receiver email address
    html_message="<h1>Your program is finished!</h1>", # content, html format supported
    subject="Proram Finished Notice" # email subject
)

To get more reminders, please check watchmen/reminder.py.

UPDATE

  • v0.3.2: fix WatchClient bug
  • v0.3.1: change Client into WatchClient, fix ClientCollection and send_email bug
  • v0.3.0: support gpu scheduling, fix blank input output, fix check_gpus_existence
  • v0.2.2: fix html package data, add multi-card example

TODO

  • import user authentication modules to help the working queue delete operations
  • read programs' pids to help reading program working status and kill tasks remotely
  • test and support distributed model parallel configurations (with python -m torch.distributed.launch)
  • prettify the web page and divide functions into different tabs
  • gpu using stats for each user and process
  • change Client into WatchClient, in case of any ambiguity
  • ClientCollection/__contains__ function should not include finished_queue, to help the id releases
  • subject bug in reminder/send_email()
  • add schedule feature, so clients only have to request for a number and range of gpus, and the server will assign the gpu num to clients
  • add reminders
  • add webui html support
  • add examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpu-watchmen-0.3.2.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

gpu_watchmen-0.3.2-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file gpu-watchmen-0.3.2.tar.gz.

File metadata

  • Download URL: gpu-watchmen-0.3.2.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.7.7

File hashes

Hashes for gpu-watchmen-0.3.2.tar.gz
Algorithm Hash digest
SHA256 6a37b13d823dd9e0d853a2a886c60928021936af7b6b04f3529acf13ded5329e
MD5 511890c135b23d8b0bb73b74b0e8f687
BLAKE2b-256 48224ae3fe68185aa65c7d29aa127dcfc1c6737f23030fec855cbac97b6fd39d

See more details on using hashes here.

File details

Details for the file gpu_watchmen-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: gpu_watchmen-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.7.7

File hashes

Hashes for gpu_watchmen-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1844581fe557a2fa4b033b6ecbb2b9f7d04f624ec8aea638b4cbcfaa0422d8a9
MD5 6290249673c26ed45081adc83104138d
BLAKE2b-256 91784ab60ae9607bf528453f731827a6cbd15bddba8a7fa979626488fc6872fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page