Skip to main content

Material structure processing software

Project description

G-Wizard

GPUMD-Wizard

Material structure processing software based on ASE (Atomic Simulation Environment) providing automation capabilities for calculating various properties of metals. Additionally, it aims to run and analyze molecular dynamics (MD) simulations using GPUMD.

Features

  • Based on the ASE package, MetalProperties-Automator supports different calculators such as calorine, DP, and LAMMPS.
  • Allows for automated batch calculations of metal properties.
  • Enables batch processing of files in the XYZ format.
  • Integrated with GPUMD for performing molecular dynamics simulations, such as irradiation damage.

Installation

Requirements

Package version
Python >= 3.8
ase >= 3.18.0
calorine >= 2.2.1
phonopy >= v2.22.0

From Source

$ git clone --recursive https://github.com/Jonsnow-willow/GPUMD-Wizard.git

Add GPUMD-Wizard to your PYTHONPATH environment variable in your ~/.bashrc file.

$ export PYTHONPATH=<path-to-GPUMD-Wizard-package>:$PYTHONPATH

Usage

from wizard.atoms import SymbolInfo, MaterialCalculator
from calorine.calculators import CPUNEP

def main():
    # Create calculator object 
    calc = CPUNEP('nep.txt')
    
    # Set properties-related parameters
    millers = [(1,1,0),(0,0,1),(1,1,1),(1,1,2)]
    sia_vectors = [(1/2,1/2,1/2),(1,0,0),(1,1,0)]
    nths = [1,2,3]

    # Generate bulk atoms and calculate properties
    symbol_info = SymbolInfo('W', 'bcc', 3.185)    
    atoms = symbol_info.create_bulk_atoms()
    material_calculator = MaterialCalculator(atoms, calc, symbol_info.symbol, symbol_info.structure)
    material_calculator.lattice_constant()
    material_calculator.elastic_constant()
    material_calculator.eos_curve()
    material_calculator.phonon_dispersion()
    material_calculator.formation_energy_vacancy()
    material_calculator.migration_energy_vacancy()
    for nth in nths:
        material_calculator.formation_energy_divacancies(nth)
    for miller in millers:
        material_calculator.formation_energy_surface(miller)
    material_calculator.stacking_fault(a = (1,1,-1), b = (1,-1,0), miller = [1,1,2], distance = 3.185/2)
    material_calculator.stacking_fault(a = (1,1,-1), b = (1,1,2), miller = [1,-1,0], distance = 3.185/2)
    material_calculator.pure_bcc_metal_screw_dipole_move()
    material_calculator.pure_bcc_metal_screw_one_move()
    for vector in sia_vectors:
        material_calculator.formation_energy_sia(vector)
    material_calculator.formation_energy_interstitial_atom('W',[0,0,1/2],'octahedral')
    material_calculator.formation_energy_interstitial_atom('W',[1/4,0,1/2],'tetrahedral')

if __name__ == "__main__":
    main()

Citations

Reference cite for what?
[1-2] for any work that used GPUMD
[3] NEP + ZBL
[4] UNEP

References

[1] Zheyong Fan, Wei Chen, Ville Vierimaa, and Ari Harju. Efficient molecular dynamics simulations with many-body potentials on graphics processing units, Computer Physics Communications 218, 10 (2017).

[2] Zheyong Fan, Yanzhou Wang, Penghua Ying, Keke Song, Junjie Wang, Yong Wang, Zezhu Zeng, Ke Xu, Eric Lindgren, J. Magnus Rahm, Alexander J. Gabourie, Jiahui Liu, Haikuan Dong, Jianyang Wu, Yue Chen, Zheng Zhong, Jian Sun, Paul Erhart, Yanjing Su, Tapio Ala-Nissila, GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations, The Journal of Chemical Physics 157, 114801 (2022).

[3] Jiahui Liu, Jesper Byggmästar, Zheyong Fan, Ping Qian, and Yanjing Su, Large-scale machine-learning molecular dynamics simulation of primary radiation damage in tungsten, Phys. Rev. B 108, 054312 (2023).

[4] Keke Song, Rui Zhao, Jiahui Liu, Yanzhou Wang, Eric Lindgren, Yong Wang, Shunda Chen, Ke Xu, Ting Liang, Penghua Ying, Nan Xu, Zhiqiang Zhao, Jiuyang Shi, Junjie Wang, Shuang Lyu, Zezhu Zeng, Shirong Liang, Haikuan Dong, Ligang Sun, Yue Chen, Zhuhua Zhang, Wanlin Guo, Ping Qian, Jian Sun, Paul Erhart, Tapio Ala-Nissila, Yanjing Su, Zheyong Fan, General-purpose machine-learned potential for 16 elemental metals and their alloys arXiv:2311.04732 [cond-mat.mtrl-sci]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpumd-wizard-0.0.1.tar.gz (32.3 kB view details)

Uploaded Source

Built Distribution

gpumd_wizard-0.0.1-py3-none-any.whl (34.4 kB view details)

Uploaded Python 3

File details

Details for the file gpumd-wizard-0.0.1.tar.gz.

File metadata

  • Download URL: gpumd-wizard-0.0.1.tar.gz
  • Upload date:
  • Size: 32.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for gpumd-wizard-0.0.1.tar.gz
Algorithm Hash digest
SHA256 0ce317d530fc5622331f65008437c9157bea31f5a0f04f5e389a709183059728
MD5 4232871fa266367e61b3d759e5b4bc96
BLAKE2b-256 bfe7f44950e5f65591c2e69bb2ce1005d150ac90407dba44506a0ed3e31c5d5c

See more details on using hashes here.

File details

Details for the file gpumd_wizard-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: gpumd_wizard-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 34.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for gpumd_wizard-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cf675b42f095bc6b20c74373f5710c2ca2c3ace8731e2393e76922640c533fe1
MD5 7a3aa42772bd1c88f6ee3beea8e71a5d
BLAKE2b-256 4d382f1741b27cb228f8c8c7f4628960e9dbf78a100450695e00ab06f1a9c195

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page