Skip to main content

Gpu Utils: Simple Tool for GPU Analysis and Allocation

Project description

GpuUtils

Working on a shared environment with multiple GPUs might be problematic. Advanced frameworks apply greedy approach and they tend to allocate all GPUs and all memory of your system. GpuUtils helps you to find the best GPU on your system to allocate. It also provides a gpu related information in a structure format.

Installation

The easiest way to install GpuUtils is to install it via PyPI.

pip install gpuutils

Analyzing system

Running nvidia-smi command in the command prompt allows users to monitor GPU related information such as memory and utilization. Herein, system analysis function loads GPU related information into a pandas data frame or json array.

from gpuutils import GpuUtils
df = GpuUtils.analyzeSystem() #this will return a pandas data frame
#dict = GpuUtils.analyzeSystem(pandas_format = False) #this will return a json array

Default configuration of system analysis returns a Pandas data frame.

gpu_index total_memories_in_mb available_memories_in_mb memory_usage_percentage utilizations power_usages_in_watts power_capacities_in_watts
1 32480 32469 0.0339 0 43 300
2 32480 32469 0.0339 0 43 300
3 32480 32469 0.0339 0 44 300
4 32480 32469 0.0339 0 43 300
5 32480 32469 0.0339 0 43 300
6 32480 32469 0.0339 0 43 300
7 32480 32469 0.0339 0 43 300
0 32480 31031 4.4612 7 56 300

Allocation

GpuUtils can allocate GPUs as well. Calling allocation function directly finds the available GPUs and allocate based on your demand.

from gpuutils import GpuUtils
GpuUtils.allocate() #this tries to allocate a GPU having 1GB memory
#GpuUtils.allocate(required_memory = 10000)
#GpuUtils.allocate(required_memory = 10000, gpu_count=1)

To avoid greedy approach

Advanced frameworks such as TensorFlow tend to allocate all memory. You can avoid this approach if you pass the framework argument in allocate function. In this way, the framework will use the gpu memory as much as needed. Currently, keras and tensorflow frameworks are supported in allocate function.

GpuUtils.allocate(framework = 'keras')

Support

There are many ways to support a project - starring⭐️ the GitHub repos is just one.

Licence

GpuUtils is licensed under the MIT License - see LICENSE for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpuutils-0.0.2.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

gpuutils-0.0.2-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file gpuutils-0.0.2.tar.gz.

File metadata

  • Download URL: gpuutils-0.0.2.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.4

File hashes

Hashes for gpuutils-0.0.2.tar.gz
Algorithm Hash digest
SHA256 a7703eed72e144355d275ce098b31f1b39da490f3d4724b2bf48a83a6e6b7ce6
MD5 56573704251bba30321cc711259e0c5b
BLAKE2b-256 638678702fc7c03725b56bfdff3e7a97ee78054a26782918da38413c97d8e11e

See more details on using hashes here.

File details

Details for the file gpuutils-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: gpuutils-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.4

File hashes

Hashes for gpuutils-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0c59202fc5cbf72511b80997db70b4592442b83dad94d65d621ff76ad0efbff3
MD5 a1dff8416752bcc54c7e121f019b8029
BLAKE2b-256 046075edaa3b46eae48f5f16c2226f52a1afd0e17231fb4fc34508cebdf0baea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page