Skip to main content

Gpytoolbox: A Python Geometry Processing Toolbox.

Project description

A Python Geometry Processing Toolbox

unit tests unit tests unit tests PyPI

https://gpytoolbox.org

logo

Authors: Silvia Sellán, University of Toronto and Oded Stein, University of Southern California

This is a very young library of general geometry processing Python research utility functions that evolves from our personal student codebases.

Installation

Latest stable release (recommended)

You should be able install the latest release of Gpytoolbox with pip:

python -m pip install gpytoolbox

A conda installation will be supported in the future.

From Git

If you want to build Gpytoolbox from a specific git commit; for example, because you want to develop for Gpytoolbox or because you want some functionality that is in the main branch but hasn't been pushed to any release yet, you should be able to do so by cloning Gpytoolbox's github repo and running

python -m pip install numpy
python -m pip install .

Documentation

You can find documentation for all our functions in our website. You can also view the documentation for a specific function by running help(function_name) or function_name.__doc__; for example,

>>> from gpytoolbox import grad
>>> help(grad)
Finite element gradient matrix

Given a triangle mesh or a polyline, computes the finite element gradient matrix assuming piecewise linear hat function basis.

Parameters
----------
V : numpy double array
    Matrix of vertex coordinates
F : numpy int array, optional (default None)
    Matrix of triangle indices

Returns
-------
G : scipy sparse.csr_matrix
    Sparse FEM gradient matrix

See Also
--------
cotangent_laplacian.

Notes
-----

Examples
--------
TO-DO

Contribute

We hope you find our current version of our library useful. At the same time, we encourage you to ask not what Gpytoolbox can do for you, but what you can do for Gpytoolbox.

Since Gpytoolbox is a very young library, we want to make it as easy as possible for others to contribute to it and help it grow. You can contribute by adding a new function in a new file inside src/gpytoolbox/, or by adding to existing functions, and submitting a Pull Request.

We also want to make the contribution process as unintimidating as possible. We will gladly review and edit your code to make sure it acommodates to our standards and we have set up many tests that will let us know if your contribution accidentally breaks anything. If there's any functionality that is not already in this library, is remotely related to geometry processing, and you have used or used in any of your past projects, we encourage you to submit it as-is in a Pull Request. We will gladly credit you in the individual function as well as on this home page.

Note that the code that you contribute will be licensed under the MIT license. Everybody will be able to use this code as long as they credit gpytoolbox (and not you individually).

License

Gpytoolbox's is released under an MIT license (see details), except for files in the gpytoolbox.copyleft module, which are under a GPL one (see details). Functions in the copyleft module must be imported explicitly; this way, if you import only the main Gpytoolbox module

import gpytoolbox

or individual functions from it,

from gpytoolbox import regular_square_mesh, regular_cube_mesh

you are only bound by the terms of the permissive MIT license. However, if you import any functionality from gpytoolbox.copyleft; e.g.,

from gpytoolbox.copyleft import mesh_boolean

you will be bound by the more restrictive GPL license.

Attribution

If you use our library in your research paper, please cite us! You can use the bibtex block below:

@misc{gpytoolbox,
  title = {{gptyoolbox}: A Python Geometry Processing Toolbox},
  author = {Silvia Sell\'{a}n and Oded Stein and others},
  note = {https://gpytoolbox.org/},
  year = {2023}
}

Acknowledgements

Several people have, knowingly or unknowingly, greatly contributed to this library. We are thankful to them:

  • Alec Jacobson is the author of the original Matlab gptoolbox on which we inspired ourselves to create this library. Several of our functions are line-by-line translations of his Matlab ones. Thanks, Alec!

  • Nicholas Sharp, the author of the game-changing geometry visualization library polyscope, was extremely helpful in guiding us through setting up and distributing a Python package. Thanks, Nick!

Contributors

Basic Optimistic Roadmap

Here are some things we think would be nice to incorporate to future versions of gpytoolbox. If there's one you are missing, feel free to submit a PR adding your item to this bullet list. If you want to contribute to gpytoolbox, a great way to start is by picking any of the items below that does not have an associated PR yet

To-do

  • Iterative closest point for mesh alignment
  • Basic FEM (cotangent matrix, mass matrix, linear elasticity) for tetrahedral meshes
  • ARAP for deformation and parametrization
  • Exact geodesic distances
  • Heat (approximate) geodesic distance
  • Blue noise in random mesh sampling
  • Intrinsic triangulation routines
  • Fracture mode computation
  • Pure-python version of in_element_aabb
  • Make all grid sizes, resolutions, etc. into tuples not necessarily numpy arrays
  • Add notes on every docstring mentioning libigl implementations
  • Tetrahedral mesh implementation of subdivide.py
  • Dihedral angle computation
  • regular_square_mesh and regular_cube_mesh should support different resolutions in x and y direction (sensible default when n_y is None, to n_y=n_x)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpytoolbox-0.3.2.tar.gz (2.3 MB view details)

Uploaded Source

Built Distributions

gpytoolbox-0.3.2-cp312-cp312-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

gpytoolbox-0.3.2-cp312-cp312-manylinux_2_28_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

gpytoolbox-0.3.2-cp312-cp312-macosx_12_0_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

gpytoolbox-0.3.2-cp312-cp312-macosx_12_0_arm64.whl (8.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

gpytoolbox-0.3.2-cp311-cp311-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

gpytoolbox-0.3.2-cp311-cp311-manylinux_2_28_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

gpytoolbox-0.3.2-cp311-cp311-macosx_12_0_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

gpytoolbox-0.3.2-cp311-cp311-macosx_12_0_arm64.whl (8.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

gpytoolbox-0.3.2-cp310-cp310-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

gpytoolbox-0.3.2-cp310-cp310-manylinux_2_28_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

gpytoolbox-0.3.2-cp310-cp310-macosx_12_0_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

gpytoolbox-0.3.2-cp310-cp310-macosx_12_0_arm64.whl (8.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

gpytoolbox-0.3.2-cp39-cp39-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

gpytoolbox-0.3.2-cp39-cp39-manylinux_2_28_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

gpytoolbox-0.3.2-cp39-cp39-macosx_12_0_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

gpytoolbox-0.3.2-cp39-cp39-macosx_12_0_arm64.whl (8.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

gpytoolbox-0.3.2-cp38-cp38-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

gpytoolbox-0.3.2-cp38-cp38-manylinux_2_28_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

gpytoolbox-0.3.2-cp38-cp38-macosx_11_0_arm64.whl (6.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gpytoolbox-0.3.2-cp38-cp38-macosx_10_16_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.8 macOS 10.16+ x86-64

gpytoolbox-0.3.2-cp37-cp37m-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

gpytoolbox-0.3.2-cp37-cp37m-manylinux_2_28_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

gpytoolbox-0.3.2-cp37-cp37m-macosx_10_16_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m macOS 10.16+ x86-64

gpytoolbox-0.3.2-cp36-cp36m-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

gpytoolbox-0.3.2-cp36-cp36m-manylinux_2_28_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.28+ x86-64

gpytoolbox-0.3.2-cp36-cp36m-macosx_10_16_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.6m macOS 10.16+ x86-64

File details

Details for the file gpytoolbox-0.3.2.tar.gz.

File metadata

  • Download URL: gpytoolbox-0.3.2.tar.gz
  • Upload date:
  • Size: 2.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.18

File hashes

Hashes for gpytoolbox-0.3.2.tar.gz
Algorithm Hash digest
SHA256 25a659320733d938fea7c1e24ce0e91325630d5acfcb34843dba81e550acee0f
MD5 5fe5ad39edd2de1397a0a6cfc576b8bc
BLAKE2b-256 ad51162bed968cb8235a416533e6cf094570d81a68d386b8219af29df6efd626

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 31ada520379a02e9062c308e7ac114c5dc326195398281d43af310c2d873b686
MD5 c0965291165cf5b8d7e5c65464713fbd
BLAKE2b-256 f196cc472849fefb1ff1d4a640582e321846948872ed7874d2db7fc16aec6b73

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 50ffb93cdd039b79993f283d0d94eaa8d8f0e6bbabadc079aa9a004844e6e96f
MD5 2f3c6f71780df9b36f3a5e20dade9e4f
BLAKE2b-256 40a05d5f16caf61f0b377eeb66516a3d05377bb1523dc3a9de09dea7a594a9e9

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 a53937b06376cc2c628989d1a5fe2372774f765210dcb9d794adf16600e66d1e
MD5 8e0ccd898b30dab1f84d35d754f58a06
BLAKE2b-256 593599564ed79cffeaf0d58c0e0bdaa28d64bb0d395a6718f47b4f7ff386d3f3

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 71b1bf488c5a14e9e969e4ee8e2894de30cac5f744666398a47ef34c8a87fc83
MD5 ef56ed6eea85fd1128af58a7f9066165
BLAKE2b-256 7d290e657358c32759d8ccd080d12e718708b062df7d39c366effa2b4138a8a1

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8ce1bc89349b4ede790c2331a34441582cc94fb672dd40628b8327e1f555fdae
MD5 73b763fbbbe0925bd54ef3e9069071a8
BLAKE2b-256 3c5b3a53fcf9de5d3db5cc7f95c40d01caca0e3a7c09b72cdd653d403c210877

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f7df0bd13a6f771a52bc50c22b827c1a7305097566c640ca7f9e09a9b2c0cc3d
MD5 f486b6e187e69c54aa78695b8500da7e
BLAKE2b-256 6b923beda12ef461c05c9faf37f586852ef918f47eedc189c690a7eff7078317

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 fed35ce7598fe755702b5ea14412cb60bb77489d85b38091b8c562d3a4b58ae8
MD5 af6a82918bc012757fa2fcb9c2707c61
BLAKE2b-256 7ab22078ac16088b0570e04bc8d6303d358d7c416dbd89232c7966aad8632e2a

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8c541096056b1002f9e0625d2a24af1abbbb207263332c99d632c503e1c5f9ce
MD5 7a2ed135d63d8e157b88243fc3650d63
BLAKE2b-256 87346f1e6b72cb7fbc3e1d73b390346e1b0ef4b2f42a932b9af15c63a62a02ac

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 97eaa5e579c2ef7a527a9f9fd819fdc29cf64fd86de815113ee3cf6dc5627d82
MD5 ddb7472acc83e43eeaf59f45caf06eed
BLAKE2b-256 12a46dcb3427d3dba5ae38c09a5dc9a098d07f5917fabea98f76776c673861bd

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2e0a6a653411418e7adb5b6c35b15fe7d0917f81c33daf838ea5ce2a0035b51a
MD5 81be865f7f77873c4c032836051bfe3f
BLAKE2b-256 d254b4a9fa042e466deae9af399080135c215110e9352599be1c2f59a138b54a

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 62f772b74a290bf21185c2470139a3a44a6cee30a81ad33eb133faf40e4346dd
MD5 a181b8b294b32caae526e3bb291cdf93
BLAKE2b-256 304171b62aa4081ca61a078a5f9c25833b64c29675c8784ddc142a7fd69ddc1e

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 92411177fedefe5eb4ca770b35dbe6415c2a8e80131af2769c2c429920010dc9
MD5 b897403392a52ca6b940647eaced383f
BLAKE2b-256 8f360934227f83cdc883a7be6fc529765df3560d49ca0ce270accbd3f6266a87

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d20ce536c2380b615d1a9a8275f556e508c8aeb9f5889a2fd183a5d2a634b04e
MD5 31313917f7d972f11c4e5b3c59f87d32
BLAKE2b-256 4798f5ae5d4ae488c45fc36c7e8f9c155f10521928930e97a96967d090fab7cc

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7340f3e5153744a6566fb9b257e5815fe7135ab39a2cd8e4573db68043c32533
MD5 24394baf1e056ef4a4ce206c22075c6f
BLAKE2b-256 3bb64a703b7f04cb50e587c3209caa97106f58e276f45806477aef3e57ccf036

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 511c9536bf4b577d00cda0312ebf2703eecae5c1070fc553f329b924fc4e0c7d
MD5 5e69cbef153e50b4c5e3525a1c83bedb
BLAKE2b-256 eb998dc8741655f8d91b24b0f098b4d326ff4706411607826bd78292d762c773

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0af67b302291462d7abe487c56d8d43d8b44dbc1fcc8ab498e92405fc090c423
MD5 aca612236f80a71a2c1416c05d88bc5a
BLAKE2b-256 7d48e1a383502a88e1db5b32650efefb6cd537662df4f8a114650fa816b1c0fe

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 43205134889796653acd064e6106d4efbd26438e1f223e4cd2c609ce7f4bc863
MD5 b1528fc531917ad87d99024bbe5727e7
BLAKE2b-256 ed9e826112f05ea167fe3b1d4eb460183de2378224ae0eebbd63736ea65bd527

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 832434562813bce530d4d00b2b15c337461d08433ffb34e4f58da0b9dc824378
MD5 7df0e229f54c23033bd4055651204252
BLAKE2b-256 8836f653697287624900b2c7498c4469df20b8ce0bc0fc50aefecf490af3573e

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3462a3a1ab1c114eba0ab0c75c423504ff10016d481b0c54cf108fef3fc500ad
MD5 da5b2b76434713e35a5264531ca3c0de
BLAKE2b-256 9a8ed54c74ec7178aa152d2464efe18c350a9fbf5ec9ce286a168afd2f435de0

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp38-cp38-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp38-cp38-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 8257f455ed6cf666d4b976edbd7180e7820e7efe7ef35ffe5e7bd07a031cee38
MD5 3de819f1ce406e7a02557b0dc9b25e00
BLAKE2b-256 1753eb71caca7ec344e4fd045f784ba42b156c46616f124e42157f5af18ec53c

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fe5e4dd9853598cf2ab01a59a8a602435eb55267d510ae9de12e6b6ae5bedc43
MD5 b2a5e4a423b3840d6f6e62e9634bd6df
BLAKE2b-256 34524f9fffe8608fe93a5664436f05c4b8f8d8e9dfdd36c77ed26aa81e0fae27

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 06aa9c9f89b367fc10d17632f9ceb69ab0aea40ca68ac9d3e3c78a400c06b5c6
MD5 2cf88bb7d7676a7772d15ea15d08d1f0
BLAKE2b-256 d7e24c461de0c15662c87cedeee1034995e129bfe6ecbac828df67748aa9b03a

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 b796919181d94a2b8cbe393ecaf7257de69327264b2dfa1d1759a5a25f1fc341
MD5 3d51b2a2728a793aa4cf048a2fdfef46
BLAKE2b-256 e3d413564d82d5e2f860f9487c5e31b71e71421a695e8f57b0ceca1c96786b27

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b6b1d6f157f347bd97d0feee93e0680d310a06b0547737ea5c9fdb154a9fb132
MD5 de6a6c2a59d3d6edb6fc8d9aa5894077
BLAKE2b-256 34d1faa29eefb055c074203f3839042b79f102f1bda79c174fef8bc534251d52

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp36-cp36m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp36-cp36m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b02723885c8f20d099637d01448b59b280f20f55f536c5d096d519cfca620a8f
MD5 9e61e83b9b2e3934960a62349347ceaf
BLAKE2b-256 578aae35733b3b282d51c31d2b72cb19779c373aa16e01efda0e14e6c5f8a95f

See more details on using hashes here.

File details

Details for the file gpytoolbox-0.3.2-cp36-cp36m-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for gpytoolbox-0.3.2-cp36-cp36m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 8c073ccaa03cc20ced12862641922ff795002f36888020fa5f0f5e5bbff8de77
MD5 889cdcc774a3ada73a02c979be6aec2e
BLAKE2b-256 f2d78986b394146789fbaf57777e08d7852d3b9ecd74b926dbb3470f6ba1dd16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page