Skip to main content

Python package for wrapping gradient optimizers for models in Theano

Project description

# Gradient Optimizers

Optimize you Theano Models with [Adagrad](http://www.magicbroom.info/Papers/DuchiHaSi10.pdf), Hessian Free optimization, or linear updates.


pip3 install gradient-optimizers


See example notebook (TBD) for tutorial.

Two classes **GradientModel**, and **GradientHFModel**, for optimizing gradient
based models (specifically built with indexed parameters in mind (e.g.
for language models))

## GradientModel

A gradient model for updating your model with
hessian free, adagrad, or linear decay updates.

You will need to define the following attributes,
and fill them as appropriate:

self.params = []
self.indexed_params = set()

self._l2_regularization = True / False

# if L2 is true store this parameter:
self._l2_regularization_parameter = theano.shared(np.float64(l2_regularization).astype(REAL), name='l2_regularization_parameter')

Upon initialization you must run:

self._select_update_mechanism(update_method_name)

# then to compile this mechanism:
self.create_update_fun()


The update methods expect the input to be of the form:

ivector <indices/>, ivector <labels/>

If this is not the case you can modify them as appropriate.

## GradientHFModel

Implements an symbolic one step of hessian-free [1]
optimization that approximates the curvature,
requires a _compute_cost method that takes an example
as input or a _compute_cost_gradients that returns
gradients for each example provided.

Model should have a params property containing symbolic
theano variables.

[[1] James Martens, ``Deep learning via Hessian-free optimization", ICML 2010](http://www.icml2010.org/papers/458.pdf)

Make sure the following parameters are not tampered with:

self._additional_params

self._num_updates

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gradient-optimizers-0.0.2.tar.gz (8.8 kB view details)

Uploaded Source

File details

Details for the file gradient-optimizers-0.0.2.tar.gz.

File metadata

File hashes

Hashes for gradient-optimizers-0.0.2.tar.gz
Algorithm Hash digest
SHA256 0c0d7b53f61dff6168817535f967ec602237176ec09d12d2d18bf9389ad6854a
MD5 bf4e69456da104c77f5e8e420e81237f
BLAKE2b-256 b315739c19a273c96b9d0b3773083533c4e6bc7304b82a676fbe58154cef072d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page