Skip to main content

Gradient ML SDK

Project description

Gradient ML SDK

This is an SDK for performing Machine Learning with Gradientº, it can be installed in addition to gradient-cli.

Requirements

This SDK requires Python 3.5+.

To install it, run:

pip install gradient-sdk

Usage

Multinode Helper Functions

Multinode GRPC Tensorflow

Set the TF_CONFIG environment variable For multi-worker training, you need to set the TF_CONFIG environment variable for each binary running in your cluster. Set the value of TF_CONFIG to a JSON string that specifies each task within the cluster, including each task's address and role within the cluster. We've provided a Kubernetes template in the tensorflow/ecosystem repo which sets TF_CONFIG for your training tasks.

get_tf_config()

Function to set value of TF_CONFIG when run on machines within Paperspace infrastructure.

It can raise a ConfigError exception with message if there's a problem with its configuration in a particular machine.

Usage example:

from gradient_sdk import get_tf_config

get_tf_config()

Hyperparameter Tuning

Currently, Gradientº only supports Hyperopt for Hyperparameter Tuning.

hyper_tune()

Function to run hyperparameter tuning.

It accepts the following arguments:

  • train_model User model to tune.
  • hparam_def User definition (scope) of search space. To set this value, refer to hyperopt documentation.
  • algo Search algorithm. Default: tpe.suggest (from hyperopt).
  • max_ecals Maximum number of function evaluations to allow before returning. Default: 25.
  • func Function to be run by hyper tune. Default: fmin (from hyperopt). Do not change this value if you do not know what you are doing!

It returns a dict with information about the tuning process.

It can raise a ConfigError exception with message if there's no connection to MongoDB.

Note: You do not need to worry about setting your MongoDB version; it will be set within Paperspace infrastructure for hyperparameter tuning.

Usage example:

from gradient_sdk import hyper_tune

# Prepare model and search scope

# minimal version
argmin1 = hyper_tune(model, scope)

# pass more arguments
argmin2 = hyper_tune(model, scope, algo=tpe.suggest, max_evals=100)

Utility Functions

get_mongo_conn_str()

Function to check and construct MongoDB connection string.

It returns a connection string to MongoDB.

It can raise a ConfigError exception with message if there's a problem with any values used to prepare the MongoDB connection string.

Usage example:

from gradient_sdk import get_mongo_conn_str

conn_str = get_mongo_conn_str()

data_dir()

Function to retrieve path to job space.

Usage example:

from gradient_sdk import data_dir

job_space = data_dir()

model_dir()

Function to retrieve path to model space.

Usage example:

from gradient_sdk import model_dir

model_path = model_dir(model_name)

export_dir()

Function to retrieve path for model export.

Usage example:

from gradient_sdk import export_dir

model_path = export_dir(model_name)

worker_hosts()

Function to retrieve information about worker hosts.

Usage example:

from gradient_sdk import worker_hosts

model_path = worker_hosts()

ps_hosts()

Function to retrieve information about Paperspace hosts.

Usage example:

from gradient_sdk import ps_hosts

model_path = ps_hosts()

task_index()

Function to retrieve information about task index.

Usage example:

from gradient_sdk import task_index

model_path = task_index()

job_name()

Function to retrieve information about job name.

Usage example:

from gradient_sdk import job_name

model_path = job_name()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for gradient-sdk, version 0.0.4
Filename, size File type Python version Upload date Hashes
Filename, size gradient_sdk-0.0.4-py3-none-any.whl (6.9 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size gradient_sdk-0.0.4.tar.gz (5.2 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page