This is an SDK for performing Machine Learning with Gradient.
Project description
Gradient Utils
Get started: Create Account • Install CLI • Tutorials • Docs
Resources: Website • Blog • Support • Contact Sales
Gradient is an an end-to-end MLOps platform that enables individuals and organizations to quickly develop, train, and deploy Deep Learning models. The Gradient software stack runs on any infrastructure e.g. AWS, GCP, on-premise and low-cost Paperspace GPUs. Leverage automatic versioning, distributed training, built-in graphs & metrics, hyperparameter search, GradientCI, 1-click Jupyter Notebooks, our Python SDK, and more.
This is an SDK for performing Machine Learning with Gradientº, it can be installed in addition to gradient-cli.
Requirements
This SDK requires Python 3.6+.
To install it, run:
pip install gradient-utils
Usage
Metrics
Library for logging custom and framework metrics in Gradient.
Usage example:
from gradient_utils.metrics import init, add_metrics, MetricsLogger
# Initialize metrics logging
with init():
# do work here
pass
# Capture metrics produced by tensorboard
with init(sync_tensorboard=True):
# do work here
pass
# Log metrics with a single command
add_metrics({"loss": 0.25, "accuracy": 0.99})
# Insert metrics with a step value
# Note: add_metrics should be called once for a step.
# Multiple calls with the same step may result in loss of metrics.
add_metrics({"loss": 0.25, "accuracy": 0.99}, step=0)
# For more advanced use cases use the MetricsLogger
logger = MetricsLogger()
logger.add_gauge("loss") # add a specific gauge
logger["loss"].set(0.25)
logger["loss"].inc()
logger.add_gauge("accuracy")
logger["accuracy"].set(0.99)
logger.push_metrics() # you must explicitly push metrics each time you mutate values when using MetricsLogger
# You can also use steps with the MetricsLogger
logger = MetricsLogger(step=0)
logger.add_gauge("loss")
logger["loss"].set(0.25)
logger.push_metrics()
logger.set_step(1) # update step explicitly
logger["loss"].set(0.25)
logger.push_metrics()
Multinode Helper Functions
Multinode GRPC Tensorflow
Set the TF_CONFIG environment variable
For multi-worker training, you need to set the TF_CONFIG
environment variable for each binary running in your cluster. Set the value of TF_CONFIG
to a JSON string that specifies each task within the cluster, including each task's address and role within the cluster. We've provided a Kubernetes template in the tensorflow/ecosystem repo which sets TF_CONFIG
for your training tasks.
get_tf_config()
Function to set value of TF_CONFIG
when run on machines within Paperspace infrastructure.
It can raise a ConfigError
exception with message if there's a problem with its configuration in a particular machine.
Usage example:
from gradient_utils import get_tf_config
get_tf_config()
Utility Functions
get_mongo_conn_str()
Function to check and construct MongoDB connection string.
It returns a connection string to MongoDB.
It can raise a ConfigError
exception with message if there's a problem with any values used to prepare the MongoDB connection string.
Usage example:
from gradient_utils import get_mongo_conn_str
conn_str = get_mongo_conn_str()
data_dir()
Function to retrieve path to job space.
Usage example:
from gradient_utils import data_dir
job_space = data_dir()
model_dir()
Function to retrieve path to model space.
Usage example:
from gradient_utils import model_dir
model_path = model_dir(model_name)
export_dir()
Function to retrieve path for model export.
Usage example:
from gradient_utils import export_dir
model_path = export_dir(model_name)
worker_hosts()
Function to retrieve information about worker hosts.
Usage example:
from gradient_utils import worker_hosts
model_path = worker_hosts()
ps_hosts()
Function to retrieve information about Paperspace hosts.
Usage example:
from gradient_utils import ps_hosts
model_path = ps_hosts()
task_index()
Function to retrieve information about task index.
Usage example:
from gradient_utils import task_index
model_path = task_index()
job_name()
Function to retrieve information about job name.
Usage example:
from gradient_utils import job_name
model_path = job_name()
Contributing
Setup
We use Docker and Docker-compose to run the tests locally.
# To setup the integration test framework
docker-compose up --remove-orphans -d pushgateway
docker-compose build utils
# To run tests
docker-compose -f docker-compose.ci.yml run utils poetry run pytest
# To autoformat
docker-compose run utils poetry run autopep8 --in-place --aggressive --aggressive --recursive .
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gradient-utils-0.5.0.tar.gz
.
File metadata
- Download URL: gradient-utils-0.5.0.tar.gz
- Upload date:
- Size: 9.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.9 CPython/3.9.7 Linux/5.4.0-1021-gcp
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9101c4260a36ffb46577752ded8e7e3b87b22613ad90f2d12d8aed2f417ed9d |
|
MD5 | 641ceab4e3e441b52b956e5317fdf36a |
|
BLAKE2b-256 | 8d6b901cab1587a49ac10125f431cbf00e0475f70d9c7040755bd55bb9fa7305 |
File details
Details for the file gradient_utils-0.5.0-py3-none-any.whl
.
File metadata
- Download URL: gradient_utils-0.5.0-py3-none-any.whl
- Upload date:
- Size: 8.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.9 CPython/3.9.7 Linux/5.4.0-1021-gcp
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc9c914950a82875c938f68867f9385590dbc24f53bc1114937e3df1eee91e86 |
|
MD5 | 7490c9ff5f3b1624652134912055e721 |
|
BLAKE2b-256 | fcf53cbbed070e20ae9542d618cb3d8f8c34b4db8cd206542402f0ac52858496 |