Skip to main content

This is an SDK for performing Machine Learning with Gradient.

Project description

GitHubSplash

Gradient Utils

PyPI codecov


Get started: Create AccountInstall CLITutorialsDocs

Resources: WebsiteBlogSupportContact Sales


Gradient is an an end-to-end MLOps platform that enables individuals and organizations to quickly develop, train, and deploy Deep Learning models. The Gradient software stack runs on any infrastructure e.g. AWS, GCP, on-premise and low-cost Paperspace GPUs. Leverage automatic versioning, distributed training, built-in graphs & metrics, hyperparameter search, GradientCI, 1-click Jupyter Notebooks, our Python SDK, and more.

This is an SDK for performing Machine Learning with Gradientº, it can be installed in addition to gradient-cli.

Requirements

This SDK requires Python 3.6+.

To install it, run:

pip install gradient-utils

Usage

Metrics

Library for logging custom and framework metrics in Gradient.

Usage example:

from gradient_utils.metrics import init, add_metrics, MetricsLogger

# Initialize metrics logging
with init():
    # do work here
    pass

# Capture metrics produced by tensorboard
with init(sync_tensorboard=True):
    # do work here
    pass

# Log metrics with a single command
add_metrics({"loss": 0.25, "accuracy": 0.99})

# Insert metrics with a step value
# Note: add_metrics should be called once for a step.
#       Multiple calls with the same step may result in loss of metrics.
add_metrics({"loss": 0.25, "accuracy": 0.99}, step=0)

# For more advanced use cases use the MetricsLogger
logger = MetricsLogger()
logger.add_gauge("loss") # add a specific gauge
logger["loss"].set(0.25)
logger["loss"].inc()
logger.add_gauge("accuracy")
logger["accuracy"].set(0.99)
logger.push_metrics() # you must explicitly push metrics each time you mutate values when using MetricsLogger

# You can also use steps with the MetricsLogger
logger = MetricsLogger(step=0)
logger.add_gauge("loss")
logger["loss"].set(0.25)
logger.push_metrics()
logger.set_step(1) # update step explicitly
logger["loss"].set(0.25)
logger.push_metrics()

Multinode Helper Functions

Multinode GRPC Tensorflow

Set the TF_CONFIG environment variable For multi-worker training, you need to set the TF_CONFIG environment variable for each binary running in your cluster. Set the value of TF_CONFIG to a JSON string that specifies each task within the cluster, including each task's address and role within the cluster. We've provided a Kubernetes template in the tensorflow/ecosystem repo which sets TF_CONFIG for your training tasks.

get_tf_config()

Function to set value of TF_CONFIG when run on machines within Paperspace infrastructure.

It can raise a ConfigError exception with message if there's a problem with its configuration in a particular machine.

Usage example:

from gradient_utils import get_tf_config

get_tf_config()

Utility Functions

get_mongo_conn_str()

Function to check and construct MongoDB connection string.

It returns a connection string to MongoDB.

It can raise a ConfigError exception with message if there's a problem with any values used to prepare the MongoDB connection string.

Usage example:

from gradient_utils import get_mongo_conn_str

conn_str = get_mongo_conn_str()

data_dir()

Function to retrieve path to job space.

Usage example:

from gradient_utils import data_dir

job_space = data_dir()

model_dir()

Function to retrieve path to model space.

Usage example:

from gradient_utils import model_dir

model_path = model_dir(model_name)

export_dir()

Function to retrieve path for model export.

Usage example:

from gradient_utils import export_dir

model_path = export_dir(model_name)

worker_hosts()

Function to retrieve information about worker hosts.

Usage example:

from gradient_utils import worker_hosts

model_path = worker_hosts()

ps_hosts()

Function to retrieve information about Paperspace hosts.

Usage example:

from gradient_utils import ps_hosts

model_path = ps_hosts()

task_index()

Function to retrieve information about task index.

Usage example:

from gradient_utils import task_index

model_path = task_index()

job_name()

Function to retrieve information about job name.

Usage example:

from gradient_utils import job_name

model_path = job_name()

Contributing

Setup

We use Docker and Docker-compose to run the tests locally.

# To setup the integration test framework
docker-compose up --remove-orphans -d pushgateway
docker-compose build utils

# To run tests
docker-compose -f docker-compose.ci.yml run utils poetry run pytest

# To autoformat
docker-compose run utils poetry run autopep8 --in-place --aggressive --aggressive --recursive .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gradient-utils-0.5.0.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

gradient_utils-0.5.0-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file gradient-utils-0.5.0.tar.gz.

File metadata

  • Download URL: gradient-utils-0.5.0.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.9 CPython/3.9.7 Linux/5.4.0-1021-gcp

File hashes

Hashes for gradient-utils-0.5.0.tar.gz
Algorithm Hash digest
SHA256 b9101c4260a36ffb46577752ded8e7e3b87b22613ad90f2d12d8aed2f417ed9d
MD5 641ceab4e3e441b52b956e5317fdf36a
BLAKE2b-256 8d6b901cab1587a49ac10125f431cbf00e0475f70d9c7040755bd55bb9fa7305

See more details on using hashes here.

File details

Details for the file gradient_utils-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: gradient_utils-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.9 CPython/3.9.7 Linux/5.4.0-1021-gcp

File hashes

Hashes for gradient_utils-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bc9c914950a82875c938f68867f9385590dbc24f53bc1114937e3df1eee91e86
MD5 7490c9ff5f3b1624652134912055e721
BLAKE2b-256 fcf53cbbed070e20ae9542d618cb3d8f8c34b4db8cd206542402f0ac52858496

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page