Skip to main content

Gradient Utils

Project description

GitHubSplash

Gradient Utils

PyPI codecov


Get started: Create AccountInstall CLITutorialsDocs

Resources: WebsiteBlogSupportContact Sales


Gradient is an an end-to-end MLOps platform that enables individuals and organizations to quickly develop, train, and deploy Deep Learning models. The Gradient software stack runs on any infrastructure e.g. AWS, GCP, on-premise and low-cost Paperspace GPUs. Leverage automatic versioning, distributed training, built-in graphs & metrics, hyperparameter search, GradientCI, 1-click Jupyter Notebooks, our Python SDK, and more.

This is an SDK for performing Machine Learning with Gradientº, it can be installed in addition to gradient-cli.

Requirements

This SDK requires Python 3.5+.

To install it, run:

pip install gradient-utils

Usage

Multinode Helper Functions

Multinode GRPC Tensorflow

Set the TF_CONFIG environment variable For multi-worker training, you need to set the TF_CONFIG environment variable for each binary running in your cluster. Set the value of TF_CONFIG to a JSON string that specifies each task within the cluster, including each task's address and role within the cluster. We've provided a Kubernetes template in the tensorflow/ecosystem repo which sets TF_CONFIG for your training tasks.

get_tf_config()

Function to set value of TF_CONFIG when run on machines within Paperspace infrastructure.

It can raise a ConfigError exception with message if there's a problem with its configuration in a particular machine.

Usage example:

from gradient_utils import get_tf_config

get_tf_config()

Hyperparameter Tuning

Currently, Gradientº only supports Hyperopt for Hyperparameter Tuning.

hyper_tune()

Function to run hyperparameter tuning.

It accepts the following arguments:

  • train_model User model to tune.
  • hparam_def User definition (scope) of search space. To set this value, refer to hyperopt documentation.
  • algo Search algorithm. Default: tpe.suggest (from hyperopt).
  • max_ecals Maximum number of function evaluations to allow before returning. Default: 25.
  • func Function to be run by hyper tune. Default: fmin (from hyperopt). Do not change this value if you do not know what you are doing!

It returns a dict with information about the tuning process.

It can raise a ConfigError exception with message if there's no connection to MongoDB.

Note: You do not need to worry about setting your MongoDB version; it will be set within Paperspace infrastructure for hyperparameter tuning.

Usage example:

from gradient_utils import hyper_tune

# Prepare model and search scope

# minimal version
argmin1 = hyper_tune(model, scope)

# pass more arguments
argmin2 = hyper_tune(model, scope, algo=tpe.suggest, max_evals=100)

Utility Functions

get_mongo_conn_str()

Function to check and construct MongoDB connection string.

It returns a connection string to MongoDB.

It can raise a ConfigError exception with message if there's a problem with any values used to prepare the MongoDB connection string.

Usage example:

from gradient_utils import get_mongo_conn_str

conn_str = get_mongo_conn_str()

data_dir()

Function to retrieve path to job space.

Usage example:

from gradient_utils import data_dir

job_space = data_dir()

model_dir()

Function to retrieve path to model space.

Usage example:

from gradient_utils import model_dir

model_path = model_dir(model_name)

export_dir()

Function to retrieve path for model export.

Usage example:

from gradient_utils import export_dir

model_path = export_dir(model_name)

worker_hosts()

Function to retrieve information about worker hosts.

Usage example:

from gradient_utils import worker_hosts

model_path = worker_hosts()

ps_hosts()

Function to retrieve information about Paperspace hosts.

Usage example:

from gradient_utils import ps_hosts

model_path = ps_hosts()

task_index()

Function to retrieve information about task index.

Usage example:

from gradient_utils import task_index

model_path = task_index()

job_name()

Function to retrieve information about job name.

Usage example:

from gradient_utils import job_name

model_path = job_name()

MetricsLogger

Prometheus wrapper for logging custom metrics

Usage example:

from gradient_utils import MetricsLogger
m_logger = MetricsLogger()
m_logger.add_gauge("some_metric_1")
m_logger["some_metric_1"].set(3)
m_logger["some_metric_1"].inc()

m_logger.add_gauge("some_metric_2")
m_logger["some_metric_2"].set_to_current_time()

m_logger.push_metrics()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gradient_utils-0.1.2.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

gradient_utils-0.1.2-py3-none-any.whl (8.8 kB view details)

Uploaded Python 3

File details

Details for the file gradient_utils-0.1.2.tar.gz.

File metadata

  • Download URL: gradient_utils-0.1.2.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.0

File hashes

Hashes for gradient_utils-0.1.2.tar.gz
Algorithm Hash digest
SHA256 66953e3f90f7148ed0b9f2fbbff062c2d02ff8bf0140509cc9d893c9af887215
MD5 4ff356664b4477308ce9befab90dfcaf
BLAKE2b-256 3b15152c6e9ec0f118951a3e664124646cfe87a3eb8ee793eca994b3270d4782

See more details on using hashes here.

File details

Details for the file gradient_utils-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: gradient_utils-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 8.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.0

File hashes

Hashes for gradient_utils-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c68d273090d2b7bf0d804bd647c3b34aaebe4cd28342f6978429fcf61386e35f
MD5 5c2c4b88a2d83e8ee7a46f2ec5e97297
BLAKE2b-256 1d4e222f8daf4bb61702e0590426c79575c3eb654e6227428a4450ed36e24a19

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page