Clip gradient norm automatically
Project description
AutoClipper
AutoClippedOptimizer is a Python factory function that returns an optimizer class with automatic gradient clipping. This feature can help to stabilize training in certain situations by limiting the magnitude of gradient updates.
The implementation is inspired by the paper "AutoClip: Adaptive Gradient Clipping for Source Separation Networks" (https://arxiv.org/abs/2007.14469) with two key differences:
- Instead of keeping track of the whole grad norm history, it limits its size to a specified window.
- It enables setting a max_norm to clamp the max grad norm value.
Usage
from autoclipper import AutoClippedOptimizer
# Create a new optimizer class with automatic gradient clipping
optimizer_cls = AutoClippedOptimizer(optimizer_cls, q=0.1, window=200, max_norm=None)
# Use the new optimizer class in your training loop
optimizer = optimizer_cls(model.parameters(), lr=0.01)
Parameters
optimizer_cls
(Type[Optimizer]): The base optimizer class to extend with automatic gradient clipping.q
(float, optional): The quantile at which to clip gradients. Gradients with norms larger than the q-th quantile of recent gradient norms are clipped. Default is 0.1.window
(int, optional): The number of recent gradient norms to consider when computing the q-th quantile for clipping. Default is 200.max_norm
(float, optional): An optional maximum gradient norm. If provided, gradients with norms larger than this value are always clipped to this value. Default is None, which means no absolute maximum gradient norm is enforced.
Methods
__init__(self, *args, **kwargs)
: Initializes the optimizer._get_grad_norm(self)
: Calculates the norm of the gradient for the current step._autoclip_gradients(self)
: Automatically clips the gradients based on the recent gradient norms._main_params(self)
: Yields the main parameters of the optimizer.step(self, closure=None, **kwargs)
: Performs a single optimization step.reset(self)
: Resets the state of the optimizer.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gradientnorm_autoclipper-1.0.0.tar.gz
.
File metadata
- Download URL: gradientnorm_autoclipper-1.0.0.tar.gz
- Upload date:
- Size: 4.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f30747120808dec1035de8dd551f2ce52cffa6745016aad5f7a3250d97573063 |
|
MD5 | 25f4ee6937e6a77c1cb1abed9cdbca91 |
|
BLAKE2b-256 | 03a55be07daf059384c64eaf40c1eb06a19360981139ce9561a59cb78ea13aca |
File details
Details for the file gradientnorm_autoclipper-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: gradientnorm_autoclipper-1.0.0-py3-none-any.whl
- Upload date:
- Size: 5.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0e9e3f28a4122870fc5b0e7d7d05fa0049840719f7358574ac0bfa76bf359d28 |
|
MD5 | b4b47dcd65e30f4905a4ba4636839a4e |
|
BLAKE2b-256 | e2cf10a3c0731b7740b3dd513a341bd5c0db8deb5a81ecb7cd3b5364781a75a5 |