Skip to main content

Clip gradient norm automatically

Project description

AutoClipper

AutoClippedOptimizer is a Python factory function that returns an optimizer class with automatic gradient clipping. This feature can help to stabilize training in certain situations by limiting the magnitude of gradient updates.

The implementation is inspired by the paper "AutoClip: Adaptive Gradient Clipping for Source Separation Networks" (https://arxiv.org/abs/2007.14469) with two key differences:

  1. Instead of keeping track of the whole grad norm history, it limits its size to a specified window.
  2. It enables setting a max_norm to clamp the max grad norm value.

Usage

from autoclipper import AutoClippedOptimizer

# Create a new optimizer class with automatic gradient clipping
optimizer_cls = AutoClippedOptimizer(optimizer_cls, q=0.1, window=200, max_norm=None)

# Use the new optimizer class in your training loop
optimizer = optimizer_cls(model.parameters(), lr=0.01)

Parameters

  • optimizer_cls (Type[Optimizer]): The base optimizer class to extend with automatic gradient clipping.
  • q (float, optional): The quantile at which to clip gradients. Gradients with norms larger than the q-th quantile of recent gradient norms are clipped. Default is 0.1.
  • window (int, optional): The number of recent gradient norms to consider when computing the q-th quantile for clipping. Default is 200.
  • max_norm (float, optional): An optional maximum gradient norm. If provided, gradients with norms larger than this value are always clipped to this value. Default is None, which means no absolute maximum gradient norm is enforced.

Methods

  • __init__(self, *args, **kwargs): Initializes the optimizer.
  • _get_grad_norm(self): Calculates the norm of the gradient for the current step.
  • _autoclip_gradients(self): Automatically clips the gradients based on the recent gradient norms.
  • _main_params(self): Yields the main parameters of the optimizer.
  • step(self, closure=None, **kwargs): Performs a single optimization step.
  • reset(self): Resets the state of the optimizer.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gradientnorm_autoclipper-1.0.0.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

gradientnorm_autoclipper-1.0.0-py3-none-any.whl (5.7 kB view details)

Uploaded Python 3

File details

Details for the file gradientnorm_autoclipper-1.0.0.tar.gz.

File metadata

File hashes

Hashes for gradientnorm_autoclipper-1.0.0.tar.gz
Algorithm Hash digest
SHA256 f30747120808dec1035de8dd551f2ce52cffa6745016aad5f7a3250d97573063
MD5 25f4ee6937e6a77c1cb1abed9cdbca91
BLAKE2b-256 03a55be07daf059384c64eaf40c1eb06a19360981139ce9561a59cb78ea13aca

See more details on using hashes here.

File details

Details for the file gradientnorm_autoclipper-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for gradientnorm_autoclipper-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0e9e3f28a4122870fc5b0e7d7d05fa0049840719f7358574ac0bfa76bf359d28
MD5 b4b47dcd65e30f4905a4ba4636839a4e
BLAKE2b-256 e2cf10a3c0731b7740b3dd513a341bd5c0db8deb5a81ecb7cd3b5364781a75a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page