Skip to main content

Editable Gradio textarea supporting highlighting

Project description

gradio_highlightedtextbox

PyPI - Version Static Badge

Editable Gradio textarea supporting highlighting

Installation

pip install gradio_highlightedtextbox

Usage

import gradio as gr
from gradio_highlightedtextbox import HighlightedTextbox


def convert_tagged_text_to_highlighted_text(
    tagged_text: str,
    tag_id: str | list[str],
    tag_open: str | list[str],
    tag_close: str | list[str],
) -> list[tuple[str, str | None]]:
    return HighlightedTextbox.tagged_text_to_tuples(
        tagged_text, tag_id, tag_open, tag_close
    )


def convert_highlighted_text_to_tagged_text(
    highlighted_text: dict[str, str | list[tuple[str, str | None]]],
    tag_id: str | list[str],
    tag_open: str | list[str],
    tag_close: str | list[str],
) -> str:
    return HighlightedTextbox.tuples_to_tagged_text(
        highlighted_text["data"], tag_id, tag_open, tag_close
    )


def show_info(
    highlighted_text: dict[str, str | list[tuple[str, str | None]]],
    tag_id: str | list[str],
    tag_open: str | list[str],
    tag_close: str | list[str],
    msg: str,
) -> None:
    gr.Info(
        f"{msg}: {HighlightedTextbox.tuples_to_tagged_text(highlighted_text['data'], tag_id, tag_open, tag_close)}"
    )


initial_text = "It is not something to be ashamed of: it is no different from the <a>personal fears</a> and <b>dislikes</b> of other things that <c>manny peopl</c> have."

with gr.Blocks() as demo:
    gr.Markdown("### Parameters to control the highlighted textbox:")
    with gr.Row():
        tag_id = gr.Dropdown(
            choices=["Error A", "Error B", "Error C"],
            value=["Error A", "Error B", "Error C"],
            multiselect=True,
            allow_custom_value=True,
            label="Tag ID",
            show_label=True,
            info="Insert one or more tag IDs to use in the highlighted textbox.",
        )
        tag_open = gr.Dropdown(
            choices=["<a>", "<b>", "<c>"],
            value=["<a>", "<b>", "<c>"],
            multiselect=True,
            allow_custom_value=True,
            label="Tag open",
            show_label=True,
            info="Insert one or more tags to mark the beginning of a highlighted section.",
        )
        tag_close = gr.Dropdown(
            choices=["</a>", "</b>", "</c>"],
            value=["</a>", "</b>", "</c>"],
            multiselect=True,
            allow_custom_value=True,
            label="Tag close",
            show_label=True,
            info="Insert one or more tags to mark the end of a highlighted section.",
        )
    gr.Markdown(
        """
### Example:

The following text is tagged using the parameters above to mark spans that will be highlighted.

Both the tagged text and the highlighted text are editable, so you can see how the changes in one affect the other.

Highlights will disappear if the highlighted text is edited. Modals will appear upon focus, change, and blur events on the highlighted text.
"""
    )
    with gr.Row():
        tagged = gr.Textbox(
            initial_text,
            interactive=True,
            label="Tagged text",
            show_label=True,
            info="Tagged text using the format above to mark spans that will be highlighted.",
        )
        high = HighlightedTextbox(
            convert_tagged_text_to_highlighted_text(
                tagged.value, tag_id.value, tag_open.value, tag_close.value
            ),
            interactive=True,
            label="Highlighted text",
            info="Textbox containing editable text with custom highlights.",
            show_legend=True,
            show_label=True,
            legend_label="Legend:",
            show_legend_label=True,
            show_remove_tags_button=True,
            show_copy_button=False,
            color_map={"Error A": "blue", "Error B": "red", "Error C": "green"},
        )

    # Functions

    tagged.input(
        fn=convert_tagged_text_to_highlighted_text,
        inputs=[tagged, tag_id, tag_open, tag_close],
        outputs=high,
    )
    high.input(
        fn=convert_highlighted_text_to_tagged_text,
        inputs=[high, tag_id, tag_open, tag_close],
        outputs=tagged,
    )
    high.focus(
        fn=show_info,
        inputs=[high, tag_id, tag_open, tag_close, gr.State("Focus")],
        outputs=None,
    )
    high.blur(
        fn=show_info,
        inputs=[high, tag_id, tag_open, tag_close, gr.State("Blur")],
        outputs=None,
    )
    high.clear(
        fn=show_info,
        inputs=[high, tag_id, tag_open, tag_close, gr.State("Remove tags")],
        outputs=None,
    )

if __name__ == "__main__":
    demo.launch()

HighlightedTextbox

Initialization

name type default description
value
list[tuple[str, str | None]] | Callable | None
"" default text to provide in textbox. If callable, the function will be called whenever the app loads to set the initial value of the component.
color_map
dict[str, str] | None
None dictionary mapping labels to colors.
show_legend
bool
False if True, will display legend.
show_legend_label
bool
False if True, will display legend label.
legend_label
str
"" label to display above legend.
combine_adjacent
bool
False if True, will combine adjacent spans with the same label.
adjacent_separator
str
"" separator to use when combining adjacent spans.
label
str | None
None component name in interface.
info
str | None
None None
every
float | None
None If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
show_label
bool | None
None if True, will display label.
container
bool
True If True, will place the component in a container - providing some extra padding around the border.
scale
int | None
None relative width compared to adjacent Components in a Row. For example, if Component A has scale=2, and Component B has scale=1, A will be twice as wide as B. Should be an integer.
min_width
int
160 minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
visible
bool
True If False, component will be hidden.
elem_id
str | None
None An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
autofocus
bool
False None
autoscroll
bool
True If True, will automatically scroll to the bottom of the textbox when the value changes, unless the user scrolls up. If False, will not scroll to the bottom of the textbox when the value changes.
interactive
bool
True if True, will be rendered as an editable textbox; if False, editing will be disabled. If not provided, this is inferred based on whether the component is used as an input or output.
elem_classes
list[str] | str | None
None An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render
bool
True If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
show_copy_button
bool
False If True, includes a copy button to copy the text in the textbox. Only applies if show_label is True.
show_remove_tags_button
bool
False If True, includes a button to remove all tags from the text.

Events

name description
change Triggered when the value of the HighlightedTextbox changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See .input() for a listener that is only triggered by user input.
input This listener is triggered when the user changes the value of the HighlightedTextbox.
select Event listener for when the user selects or deselects the HighlightedTextbox. Uses event data gradio.SelectData to carry value referring to the label of the HighlightedTextbox, and selected to refer to state of the HighlightedTextbox. See EventData documentation on how to use this event data
submit This listener is triggered when the user presses the Enter key while the HighlightedTextbox is focused.
focus This listener is triggered when the HighlightedTextbox is focused.
blur This listener is triggered when the HighlightedTextbox is unfocused/blurred.
clear This listener is triggered when the user clears the HighlightedTextbox using the X button for the component.

User function

The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).

  • When used as an Input, the component only impacts the input signature of the user function.
  • When used as an output, the component only impacts the return signature of the user function.

The code snippet below is accurate in cases where the component is used as both an input and an output.

  • As input: Should return, list of (word, category) tuples, or a dictionary of two keys: "id", and "data", which is a list of (word, category) tuples.
def predict(
    value: dict
) -> list[tuple[str, str | None]] | dict | None:
    return value

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gradio_highlightedtextbox-0.0.12.tar.gz (53.1 kB view details)

Uploaded Source

Built Distribution

gradio_highlightedtextbox-0.0.12-py3-none-any.whl (34.6 kB view details)

Uploaded Python 3

File details

Details for the file gradio_highlightedtextbox-0.0.12.tar.gz.

File metadata

File hashes

Hashes for gradio_highlightedtextbox-0.0.12.tar.gz
Algorithm Hash digest
SHA256 a178f26d23a2d9f9d91cf2cf364eb61b3720bdcfe555f5cad26f90c5da4acb5a
MD5 ee08074048e646ca5b0b7e51324a7df6
BLAKE2b-256 52a8b8739e69ce742d09f54992be752bd26d281370a23f4fddd062eeab3da026

See more details on using hashes here.

File details

Details for the file gradio_highlightedtextbox-0.0.12-py3-none-any.whl.

File metadata

File hashes

Hashes for gradio_highlightedtextbox-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 5a2d65aedcb1ab8fb6952604f0e8b78cde95851a923c325a87eb0bd03c7c5702
MD5 84d49ba8c93d44977708b1a59b4dc85a
BLAKE2b-256 6865660c199a4fb657459b0d3e1b5a3d34d49c81e3d889fd97cbe93ece4da718

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page