Skip to main content

Library to monitor your OpenAI usage and send metrics and logs to Grafana Cloud

Project description

OpenAI Monitoring: Monitor OpenAI API Usage with Grafana Cloud

Grafana GitHub Last Commit GitHub Contributors

Python Tests Pylint

grafana-openai-monitoring is a Python library that provides a decorators to monitor chat completions and Completions endpoints of the OpenAI API. It facilitates sending metrics and logs to Grafana Cloud, allowing you to track and analyze OpenAI API usage and responses.

Installation

You can install grafana-openai-monitoring using pip:

pip install grafana-openai-monitoring

Usage

The following tables shows which OpenAI function correspons to which monitoing function in this library

OpenAI Function Monitoring Function
ChatCompletion.create chat_v2.monitor
Completion.create chat_v1.monitor

ChatCompletions

To monitor ChatCompletions using the OpenAI API, you can use the chat_v2.monitor decorator. This decorator automatically tracks API calls and sends metrics and logs to the specified Grafana Cloud endpoints.

Here's how to set it up:

from openai import OpenAI
from grafana_openai_monitoring import chat_v2

client = OpenAI(
    api_key="YOUR_OPENAI_API_KEY",
)

# Apply the custom decorator to the OpenAI API function. To use with AsyncOpenAI, Pass `use_async` = True in this function.
client.chat.completions.create = chat_v2.monitor(
    client.chat.completions.create,
    metrics_url="YOUR_PROMETHEUS_METRICS_URL",  # Example: "https://prometheus.grafana.net/api/prom"
    logs_url="YOUR_LOKI_LOGS_URL",  # Example: "https://logs.example.com/loki/api/v1/push/"
    metrics_username="YOUR_METRICS_USERNAME",  # Example: "123456"
    logs_username="YOUR_LOGS_USERNAME",  # Example: "987654"
    access_token="YOUR_ACCESS_TOKEN"  # Example: "glc_eyasdansdjnaxxxxxxxxxxx"
)

# Now any call to client.chat.completions.create will be automatically tracked
response = client.chat.completions.create(model="gpt-4", max_tokens=100, messages=[{"role": "user", "content": "What is Grafana?"}])
print(response)

Completions

To monitor completions using the OpenAI API, you can use the chat_v1.monitor decorator. This decorator adds monitoring capabilities to the OpenAI API function and sends metrics and logs to the specified Grafana Cloud endpoints.

Here's how to apply it:

from openai import OpenAI
from grafana_openai_monitoring import chat_v1

client = OpenAI(
    api_key="YOUR_OPENAI_API_KEY",
)

# Apply the custom decorator to the OpenAI API function
client.completions.create = chat_v1.monitor(
    client.completions.create,
    metrics_url="YOUR_PROMETHEUS_METRICS_URL",  # Example: "https://prometheus.grafana.net/api/prom"
    logs_url="YOUR_LOKI_LOGS_URL",  # Example: "https://logs.example.com/loki/api/v1/push/"
    metrics_username="YOUR_METRICS_USERNAME",  # Example: "123456"
    logs_username="YOUR_LOGS_USERNAME",  # Example: "987654"
    access_token="YOUR_ACCESS_TOKEN"  # Example: "glc_eyasdansdjnaxxxxxxxxxxx"
)

# Now any call to client.completions.create will be automatically tracked
response = client.completions.create(model="davinci", max_tokens=100, prompt="Isn't Grafana the best?")
print(response)

Configuration

To use the grafana-openai-monitoring library effectively, you need to provide the following information:

  • YOUR_OPENAI_API_KEY: Replace this with your actual OpenAI API key.
  • YOUR_PROMETHEUS_METRICS_URL: Replace the URL with your Prometheus URL.
  • YOUR_LOKI_LOGS_URL: Replace with the URL where you want to send Loki logs.
  • YOUR_METRICS_USERNAME: Replace with the username for Prometheus.
  • YOUR_LOGS_USERNAME: Replace with the username for Loki.
  • YOUR_ACCESS_TOKEN: Replace with the Cloud Access Policy token required for authentication.

After configuring the parameters, the monitored API function will automatically log and track the requests and responses to the specified endpoints.

Compatibility

Python 3.7.1 and above

Dependencies

License

This project is licensed under the GPL-3.0 license - see the LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grafana_openai_monitoring-0.0.9.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file grafana_openai_monitoring-0.0.9.tar.gz.

File metadata

File hashes

Hashes for grafana_openai_monitoring-0.0.9.tar.gz
Algorithm Hash digest
SHA256 92022d2a04dd6f7ede4237ad136642c606df1dede81253a8954acc128a8eeb2a
MD5 b348a0484a8b44ff9d8ba3ab071e9b31
BLAKE2b-256 30e4e96a3fcc23803cb60daf2bedb1d2a3e4132514975c6f2bc9ac4723d0f180

See more details on using hashes here.

File details

Details for the file grafana_openai_monitoring-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for grafana_openai_monitoring-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 5ba152c46b7d256b1f5f9456aea98ec0dd8f713b969363b9ef73a2087c20345a
MD5 8389974adeccc13408c29061024178a3
BLAKE2b-256 482a0e04ba409e97a3f52e682a498e5b89cf64224999e308bc6fbe254f033f60

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page