Skip to main content

Library for building Grafana dashboards

Project description

https://circleci.com/gh/weaveworks/grafanalib.svg?style=shield

Do you like Grafana but wish you could version your dashboard configuration? Do you find yourself repeating common patterns? If so, grafanalib is for you.

grafanalib lets you generate Grafana dashboards from simple Python scripts.

Writing dashboards

The following will configure a dashboard with a single row, with one QPS graph broken down by status code and another latency graph showing median and 99th percentile latency:

import itertools

from grafanalib.core import *


GRAPH_ID = itertools.count(1)


dashboard = Dashboard(
  title="Frontend Stats",
  rows=[
    Row(panels=[
      Graph(
        title="Frontend QPS",
        dataSource='My Prometheus',
        targets=[
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"1.."}[1m]))',
            legendFormat="1xx",
            refId='A',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"2.."}[1m]))',
            legendFormat="2xx",
            refId='B',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"3.."}[1m]))',
            legendFormat="3xx",
            refId='C',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"4.."}[1m]))',
            legendFormat="4xx",
            refId='D',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"5.."}[1m]))',
            legendFormat="5xx",
            refId='E',
          ),
        ],
        id=next(GRAPH_ID),
        yAxes=[
          YAxis(format=OPS_FORMAT),
          YAxis(format=SHORT_FORMAT),
        ],
      ),
      Graph(
        title="Frontend latency",
        dataSource='My Prometheus',
        targets=[
          Target(
            expr='histogram_quantile(0.5, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
            legendFormat="0.5 quantile",
            refId='A',
          ),
          Target(
            expr='histogram_quantile(0.99, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
            legendFormat="0.99 quantile",
            refId='B',
          ),
        ],
        id=next(GRAPH_ID),
        yAxes=[
          YAxis(
            format=SECONDS_FORMAT,
          ),
          YAxis(
            format=SHORT_FORMAT,
            show=False,
          )
        ],
      ),
    ]),
  ],
)

There is a fair bit of repetition here, but once you figure out what works for your needs, you can factor that out. See our Weave-specific customizations for inspiration.

Generating dashboards

If you save the above as frontend.dashboard.py (the suffix must be .dashboard.py), you can then generate the JSON dashboard with:

$ generate-dashboard -o frontend.json frontend.dashboard.py

Installation

grafanalib is just a Python package, so:

$ pip install grafanalib

Support

This library is in its very early stages. We’ll probably make changes that break backwards compatibility, although we’ll try hard not to.

grafanalib works with Python 3.4 and 3.5.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grafanalib-0.1.1.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

grafanalib-0.1.1-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file grafanalib-0.1.1.tar.gz.

File metadata

  • Download URL: grafanalib-0.1.1.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for grafanalib-0.1.1.tar.gz
Algorithm Hash digest
SHA256 38142fefaddb35a89fc19ee4944c4e93d0364dbd170b36a3e3af87a5394a0ccc
MD5 281eb343d66bdb70b10b306f35d985ed
BLAKE2b-256 0e2ed3d78142f77243e2c54c51f173729c7821818f669f08c1160983ec5bbed3

See more details on using hashes here.

File details

Details for the file grafanalib-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for grafanalib-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5afbc95f5f986703354fcbaf9d0c23718910457b9658ec718d4c99a09446545d
MD5 fb7b81d624e0779bc1be890454e627ab
BLAKE2b-256 50404e35600b03e2ef735e66ada4e10c8f91611d7306f89ab0e64daf0b5ac710

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page