Library for building Grafana dashboards
Project description
Do you like Grafana but wish you could version your dashboard configuration? Do you find yourself repeating common patterns? If so, grafanalib is for you.
grafanalib lets you generate Grafana dashboards from simple Python scripts.
Writing dashboards
The following will configure a dashboard with a single row, with one QPS graph broken down by status code and another latency graph showing median and 99th percentile latency:
import itertools
from grafanalib.core import *
GRAPH_ID = itertools.count(1)
dashboard = Dashboard(
title="Frontend Stats",
rows=[
Row(panels=[
Graph(
title="Frontend QPS",
dataSource='My Prometheus',
targets=[
Target(
expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"1.."}[1m]))',
legendFormat="1xx",
refId='A',
),
Target(
expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"2.."}[1m]))',
legendFormat="2xx",
refId='B',
),
Target(
expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"3.."}[1m]))',
legendFormat="3xx",
refId='C',
),
Target(
expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"4.."}[1m]))',
legendFormat="4xx",
refId='D',
),
Target(
expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"5.."}[1m]))',
legendFormat="5xx",
refId='E',
),
],
id=next(GRAPH_ID),
yAxes=[
YAxis(format=OPS_FORMAT),
YAxis(format=SHORT_FORMAT),
],
),
Graph(
title="Frontend latency",
dataSource='My Prometheus',
targets=[
Target(
expr='histogram_quantile(0.5, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
legendFormat="0.5 quantile",
refId='A',
),
Target(
expr='histogram_quantile(0.99, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
legendFormat="0.99 quantile",
refId='B',
),
],
id=next(GRAPH_ID),
yAxes=[
YAxis(
format=SECONDS_FORMAT,
),
YAxis(
format=SHORT_FORMAT,
show=False,
)
],
),
]),
],
)
There is a fair bit of repetition here, but once you figure out what works for your needs, you can factor that out. See our Weave-specific customizations for inspiration.
Generating dashboards
If you save the above as frontend.dashboard.py (the suffix must be .dashboard.py), you can then generate the JSON dashboard with:
$ generate-dashboard -o frontend.json frontend.dashboard.py
Installation
grafanalib is just a Python package, so:
$ pip install grafanalib
Support
This library is in its very early stages. We’ll probably make changes that break backwards compatibility, although we’ll try hard not to.
grafanalib works with Python 3.4 and 3.5.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file grafanalib-0.1.1.tar.gz
.
File metadata
- Download URL: grafanalib-0.1.1.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 38142fefaddb35a89fc19ee4944c4e93d0364dbd170b36a3e3af87a5394a0ccc |
|
MD5 | 281eb343d66bdb70b10b306f35d985ed |
|
BLAKE2b-256 | 0e2ed3d78142f77243e2c54c51f173729c7821818f669f08c1160983ec5bbed3 |
File details
Details for the file grafanalib-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: grafanalib-0.1.1-py3-none-any.whl
- Upload date:
- Size: 10.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5afbc95f5f986703354fcbaf9d0c23718910457b9658ec718d4c99a09446545d |
|
MD5 | fb7b81d624e0779bc1be890454e627ab |
|
BLAKE2b-256 | 50404e35600b03e2ef735e66ada4e10c8f91611d7306f89ab0e64daf0b5ac710 |