Skip to main content

Library for building Grafana dashboards

Project description

https://circleci.com/gh/weaveworks/grafanalib.svg?style=shield

Do you like Grafana but wish you could version your dashboard configuration? Do you find yourself repeating common patterns? If so, grafanalib is for you.

grafanalib lets you generate Grafana dashboards from simple Python scripts.

Writing dashboards

The following will configure a dashboard with a single row, with one QPS graph broken down by status code and another latency graph showing median and 99th percentile latency:

from grafanalib.core import *


dashboard = Dashboard(
  title="Frontend Stats",
  rows=[
    Row(panels=[
      Graph(
        title="Frontend QPS",
        dataSource='My Prometheus',
        targets=[
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"1.."}[1m]))',
            legendFormat="1xx",
            refId='A',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"2.."}[1m]))',
            legendFormat="2xx",
            refId='B',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"3.."}[1m]))',
            legendFormat="3xx",
            refId='C',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"4.."}[1m]))',
            legendFormat="4xx",
            refId='D',
          ),
          Target(
            expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"5.."}[1m]))',
            legendFormat="5xx",
            refId='E',
          ),
        ],
        yAxes=[
          YAxis(format=OPS_FORMAT),
          YAxis(format=SHORT_FORMAT),
        ],
        alert=Alert(
          name="Too many 500s on Nginx",
          message="More than 5 QPS of 500s on Nginx for 5 minutes",
          alertConditions=[
            AlertCondition(
              Target(
                expr='sum(irate(nginx_http_requests_total{job="default/frontend",status=~"5.."}[1m]))',
                legendFormat="5xx",
                refId='A',
              ),
              timeRange=TimeRange("5m", "now"),
              evaluator=GreaterThan(5),
              operator=OP_AND,
              reducerType=RTYPE_SUM,
            ),
          ],
        )
      ),
      Graph(
        title="Frontend latency",
        dataSource='My Prometheus',
        targets=[
          Target(
            expr='histogram_quantile(0.5, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
            legendFormat="0.5 quantile",
            refId='A',
          ),
          Target(
            expr='histogram_quantile(0.99, sum(irate(nginx_http_request_duration_seconds_bucket{job="default/frontend"}[1m])) by (le))',
            legendFormat="0.99 quantile",
            refId='B',
          ),
        ],
        yAxes=single_y_axis(format=SECONDS_FORMAT),
      ),
    ]),
  ],
).auto_panel_ids()

There is a fair bit of repetition here, but once you figure out what works for your needs, you can factor that out. See our Weave-specific customizations for inspiration.

Generating dashboards

If you save the above as frontend.dashboard.py (the suffix must be .dashboard.py), you can then generate the JSON dashboard with:

$ generate-dashboard -o frontend.json frontend.dashboard.py

Installation

grafanalib is just a Python package, so:

$ pip install grafanalib

Support

This library is in its very early stages. We’ll probably make changes that break backwards compatibility, although we’ll try hard not to.

grafanalib works with Python 2.7, 3.4, 3.5, and 3.6.

Developing

If you’re working on the project, and need to build from source, it’s done as follows:

$ virtualenv .env
$ . ./.env/bin/activate
$ pip install -e .

gfdatasource

This module also provides a script and docker image which can configure grafana with new sources, or enable app plugins.

The script answers the –help with full usage information, but basic invocation looks like this:

$ <gfdatasource> --grafana-url http://grafana. datasource --data-source-url http://datasource
$ <gfdatasource> --grafana-url http://grafana. app --id my-plugin

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grafanalib-0.5.0.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

grafanalib-0.5.0-py3-none-any.whl (28.2 kB view details)

Uploaded Python 3

File details

Details for the file grafanalib-0.5.0.tar.gz.

File metadata

  • Download URL: grafanalib-0.5.0.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for grafanalib-0.5.0.tar.gz
Algorithm Hash digest
SHA256 1e20d56372aa0498fc40bba7421b7cc1b3a82755c3cf3f61e18b721e74585228
MD5 104dc785a7ec3e6756b16868312ee698
BLAKE2b-256 0cdd0b2d28622a161270efb27c0e664730e9a2f21ef0a595c2051b4b75c22e2f

See more details on using hashes here.

File details

Details for the file grafanalib-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for grafanalib-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 510fd2caf6ef795efb43500825978cbfc0d5b02503229705128f3519743d1281
MD5 c166a0fb394defbb4e53078ae1cdc2a6
BLAKE2b-256 907bcbddab0f4d53b7835194e66eaac350fd59c9db9ec13ef2babd582ff14df4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page