Skip to main content

Async AI Agent Framework

Project description

GRAMI AI: The Modern Async AI Agent Framework

Documentation Status PyPI version License: MIT

๐Ÿค– GRAMI AI Framework

GRAMI is an advanced, privacy-focused async AI agent framework designed for enterprise applications. It provides a flexible, modular architecture for building AI agents with support for both private and cloud-based LLM providers.

๐Ÿ” Privacy-First Design

GRAMI prioritizes data privacy and security:

  • Local LLM Support: First-class support for Ollama, enabling fully private AI deployments
  • Hybrid Options: Use Google's Gemini for a balance of privacy and performance
  • Flexible Architecture: Easy integration of any LLM provider, cloud or local

๐Ÿš€ Quick Start

  1. Install GRAMI:
pip install grami-ai
  1. Choose your LLM provider:
from grami_ai.agent import AsyncAgent
from grami_ai.memory import InMemoryAbstractMemory
from grami_ai.tools import CalculatorTool

# For private deployment with Ollama
agent = AsyncAgent(
    tools=[CalculatorTool()],
    memory=InMemoryAbstractMemory(),
    model="ollama/llama2",  # or other Ollama models
    provider_config={
        "base_url": "http://localhost:11434"
    }
)

# For Google's Gemini
agent = AsyncAgent(
    tools=[CalculatorTool()],
    memory=InMemoryAbstractMemory(),
    model="gemini-pro",
    provider_config={
        "api_key": "your-google-api-key"
    }
)

# Execute tasks
result = await agent.execute_task({
    "objective": "Calculate compound interest",
    "input": "What is 5% interest compounded annually on $1000 for 3 years?"
})

๐Ÿ› ๏ธ Features

  • Async-First: Built for high-performance async operations
  • Provider Agnostic: Support for multiple LLM providers:
    • ๐Ÿ  Ollama: Local deployment with models like Llama 2
    • ๐ŸŒ Google Gemini: Enterprise-grade cloud provider
    • โ˜๏ธ OpenAI: GPT-3.5/4 integration (optional)
    • ๐Ÿค– Anthropic: Claude models (optional)
  • Memory Systems: Flexible memory backends
  • Tool Integration: Extensible tool system
  • Type Safety: Full type hints and validation
  • Enterprise Ready: Built for production workloads

๐Ÿ“š Examples

See the examples directory for:

  • Private AI deployment with Ollama
  • Hybrid deployment with Google Gemini
  • Advanced agent configurations
  • Custom tool integration
  • Memory system usage

๐Ÿ”ง Installation Options

# Core installation
pip install grami-ai

# With Gemini support
pip install grami-ai[gemini]

# With Ollama support (recommended for private deployment)
pip install grami-ai[ollama]

# With all providers
pip install grami-ai[all]

๐Ÿ”’ Security

GRAMI is designed with security in mind:

  • No data leaves your infrastructure with local LLM deployment
  • Secure API key handling
  • Configurable safety settings
  • Rate limiting and retry mechanisms

๐Ÿ“– Documentation

๐Ÿค Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

๐Ÿ“„ License

GRAMI is licensed under MIT - see LICENSE for details.


Made with โค๏ธ by YAFATEK Solutions

๐Ÿ—๏ธ Architecture

                                GRAMI AI Architecture
                                
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                           Client Applications                        โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                    โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                              API Layer                              โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                    โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                           Agent Orchestrator                         โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚  Agent 1    โ”‚   Agent 2   โ”‚   Agent 3   โ”‚   Agent 4   โ”‚  Agent N   โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”˜
      โ”‚              โ”‚              โ”‚             โ”‚            โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   Memory   โ”‚   Events    โ”‚    Tools    โ”‚  Providers โ”‚  Security  โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿš€ Quick Start

  1. Install GRAMI AI:
pip install grami-ai

# Optional features
pip install grami-ai[gemini]    # For Google Gemini support
pip install grami-ai[ollama]    # For Ollama support
pip install grami-ai[dev]       # For development tools
  1. Create your first agent:
from grami_ai.agent import AsyncAgent
from grami_ai.tools import CalculatorTool, WebScraperTool
from grami_ai.memory import InMemoryAbstractMemory

async def main():
    # Initialize agent with tools and memory
    agent = AsyncAgent(
        tools=[CalculatorTool(), WebScraperTool()],
        memory=InMemoryAbstractMemory(),
        model="gemini-pro"  # or "gpt-3.5-turbo", "ollama/llama2", etc.
    )
    
    # Execute a task
    result = await agent.execute_task({
        "objective": "Calculate and explain",
        "input": "What is 25 * 48?"
    })
    
    print(result)

if __name__ == "__main__":
    import asyncio
    asyncio.run(main())
  1. Assign tasks to your agent:
from grami_ai.core.constants import Priority

# Create a task
task = {
    "objective": "Analyze this text document",
    "input": "Sample text for analysis",
    "priority": Priority.HIGH
}

# Assign and execute task
result = await agent.execute_task(task)

๐Ÿ“ฆ Core Components

1. Agents

  • Base agent class with common functionality
  • Customizable behavior and capabilities
  • Built-in task queue and priority handling

2. Memory

  • Multiple backend support (Redis, PostgreSQL, MongoDB)
  • Automatic data serialization/deserialization
  • Configurable retention and indexing

3. Events

  • Real-time communication between agents
  • Kafka-based event streaming
  • Event filtering and routing

4. Tools

  • Extensible tool interface
  • Built-in common tools
  • Custom tool development support

5. Configuration

  • Environment-specific settings
  • Secure secrets management
  • Dynamic configuration updates

๐Ÿ”ง Development

  1. Clone the repository:
git clone https://github.com/yourusername/grami-ai.git
cd grami-ai
  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install development dependencies:
pip install -e ".[dev]"
  1. Run tests:
pytest tests/

๐Ÿ“– Documentation

Full documentation is available at docs.grami-ai.org

๐Ÿค Contributing

We welcome contributions! Please see our Contributing Guide for details.

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

  • YAFATEK Solutions - The company behind GRAMI AI
  • The amazing open-source community
  • All our contributors and users

Vision

Grami AI is designed to revolutionize how developers build AI agents by providing a modern, async-first framework that emphasizes:

  • Asynchronous by Default: Built from the ground up for high-performance, non-blocking operations
  • Modular Architecture: Plug-and-play components for tools, memory, and LLM providers
  • Type Safety: Comprehensive type hints and protocol-based interfaces
  • Production Ready: Built for reliability and scalability in real-world applications

Quick Start

# Install the base package
pip install grami-ai

# Install with optional features
pip install grami-ai[gemini]    # For Google Gemini support
pip install grami-ai[ollama]    # For Ollama support
pip install grami-ai[dev]       # For development tools

Basic Usage

from grami_ai.agent import AsyncAgent
from grami_ai.tools import CalculatorTool, WebScraperTool
from grami_ai.memory import InMemoryAbstractMemory

async def main():
    # Initialize agent with tools and memory
    agent = AsyncAgent(
        tools=[CalculatorTool(), WebScraperTool()],
        memory=InMemoryAbstractMemory(),
        model="gemini-pro"  # or "gpt-3.5-turbo", "ollama/llama2", etc.
    )
    
    # Execute tasks asynchronously
    result = await agent.execute(
        "Calculate the square root of the number of words on example.com"
    )
    print(result)

# Run the async function
import asyncio
asyncio.run(main())

Architecture

Grami AI is built on three core pillars:

1. Tools System

  • Protocol-based tool definition
  • Async execution
  • Built-in validation and error handling
  • Extensive tool library (web scraping, calculations, file operations, etc.)
from grami_ai.core.interfaces import AsyncTool
from typing import Any, Dict

class MyCustomTool(AsyncTool):
    async def run(self, input_data: str, **kwargs) -> Dict[str, Any]:
        # Your async tool implementation
        return {"result": processed_data}

2. Memory Management

  • Flexible memory backends (In-Memory, Redis, Custom)
  • Automatic context management
  • Memory size limits and pruning strategies
from grami_ai.memory import RedisMemory

memory = RedisMemory(
    redis_url="redis://localhost:6379",
    max_items=1000,
    ttl=3600  # 1 hour
)

3. LLM Integration

  • Support for multiple LLM providers
  • Streaming responses
  • Token management
  • Retry mechanisms
from grami_ai.llm import GeminiProvider

llm = GeminiProvider(
    api_key="your-api-key",
    model="gemini-pro",
    max_tokens=1000
)

Advanced Features

Parallel Tool Execution

async def parallel_execution():
    tools = [WebScraperTool(), CalculatorTool(), StringTool()]
    results = await asyncio.gather(*[
        tool.execute(input_data) 
        for tool in tools
    ])

Custom Memory Backend

from grami_ai.core.interfaces import AsyncMemoryProvider

class MyCustomMemory(AsyncMemoryProvider):
    async def add_item(self, key: str, value: dict) -> None:
        # Implementation
        pass

    async def get_items(self, key: str) -> list:
        # Implementation
        pass

Error Handling

from grami_ai.exceptions import ToolExecutionError

try:
    result = await agent.execute("complex task")
except ToolExecutionError as e:
    print(f"Tool execution failed: {e}")

Documentation

Comprehensive documentation is available at grami-ai.readthedocs.io, including:

  • Getting Started Guide
  • API Reference
  • Advanced Usage Examples
  • Contributing Guidelines

Contributing

We welcome contributions! Here's how you can help:

  1. Fork the repository
  2. Create a feature branch
  3. Write your changes
  4. Write tests for your changes
  5. Submit a pull request
# Development setup
git clone https://github.com/grami-ai/framework.git
cd framework
pip install -e .[dev]
pytest

License

MIT License

Copyright (c) 2024 YAFATEK Solutions

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grami_ai-0.2.301.tar.gz (42.3 kB view details)

Uploaded Source

Built Distribution

grami_ai-0.2.301-py3-none-any.whl (44.0 kB view details)

Uploaded Python 3

File details

Details for the file grami_ai-0.2.301.tar.gz.

File metadata

  • Download URL: grami_ai-0.2.301.tar.gz
  • Upload date:
  • Size: 42.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for grami_ai-0.2.301.tar.gz
Algorithm Hash digest
SHA256 16c5b9d5c55788445bea29abdc0cf97329a6a4ae78682d3451c3edf325b6edf3
MD5 0d9a655b2962448971494174bf3b874e
BLAKE2b-256 386cf1c6ab0aa4cc3f5286e96340101d245de201ee45e2d96165bb121533541e

See more details on using hashes here.

File details

Details for the file grami_ai-0.2.301-py3-none-any.whl.

File metadata

  • Download URL: grami_ai-0.2.301-py3-none-any.whl
  • Upload date:
  • Size: 44.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for grami_ai-0.2.301-py3-none-any.whl
Algorithm Hash digest
SHA256 cbcb492721116f2d50cd9dafc379c63f2f3b5ed6dbe15f365ce49c03b6410144
MD5 8f5db426d5a4f52d4aaace70bb81867a
BLAKE2b-256 aa91cee4772455984b937f35fbd2c13902952fc44b234549b9a063575eb4d4ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page