Async AI Agent Framework
Project description
GRAMI AI: The Modern Async AI Agent Framework
๐ค GRAMI AI Framework
GRAMI is an advanced, privacy-focused async AI agent framework designed for enterprise applications. It provides a flexible, modular architecture for building AI agents with support for both private and cloud-based LLM providers.
๐ Privacy-First Design
GRAMI prioritizes data privacy and security:
- Local LLM Support: First-class support for Ollama, enabling fully private AI deployments
- Hybrid Options: Use Google's Gemini for a balance of privacy and performance
- Flexible Architecture: Easy integration of any LLM provider, cloud or local
๐ Quick Start
- Install GRAMI:
pip install grami-ai
- Choose your LLM provider:
from grami_ai.agent import AsyncAgent
from grami_ai.memory import InMemoryAbstractMemory
from grami_ai.tools import CalculatorTool
# For private deployment with Ollama
agent = AsyncAgent(
tools=[CalculatorTool()],
memory=InMemoryAbstractMemory(),
model="ollama/llama2", # or other Ollama models
provider_config={
"base_url": "http://localhost:11434"
}
)
# For Google's Gemini
agent = AsyncAgent(
tools=[CalculatorTool()],
memory=InMemoryAbstractMemory(),
model="gemini-pro",
provider_config={
"api_key": "your-google-api-key"
}
)
# Execute tasks
result = await agent.execute_task({
"objective": "Calculate compound interest",
"input": "What is 5% interest compounded annually on $1000 for 3 years?"
})
๐ ๏ธ Features
- Async-First: Built for high-performance async operations
- Provider Agnostic: Support for multiple LLM providers:
- ๐ Ollama: Local deployment with models like Llama 2
- ๐ Google Gemini: Enterprise-grade cloud provider
- โ๏ธ OpenAI: GPT-3.5/4 integration (optional)
- ๐ค Anthropic: Claude models (optional)
- Memory Systems: Flexible memory backends
- Tool Integration: Extensible tool system
- Type Safety: Full type hints and validation
- Enterprise Ready: Built for production workloads
๐ Examples
See the examples directory for:
- Private AI deployment with Ollama
- Hybrid deployment with Google Gemini
- Advanced agent configurations
- Custom tool integration
- Memory system usage
๐ง Installation Options
# Core installation
pip install grami-ai
# With Gemini support
pip install grami-ai[gemini]
# With Ollama support (recommended for private deployment)
pip install grami-ai[ollama]
# With all providers
pip install grami-ai[all]
๐ Security
GRAMI is designed with security in mind:
- No data leaves your infrastructure with local LLM deployment
- Secure API key handling
- Configurable safety settings
- Rate limiting and retry mechanisms
๐ Documentation
๐ค Contributing
We welcome contributions! See CONTRIBUTING.md for guidelines.
๐ License
GRAMI is licensed under MIT - see LICENSE for details.
Made with โค๏ธ by YAFATEK Solutions
๐๏ธ Architecture
GRAMI AI Architecture
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Client Applications โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ API Layer โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Agent Orchestrator โ
โโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโฌโโโโโโโโโโโโโค
โ Agent 1 โ Agent 2 โ Agent 3 โ Agent 4 โ Agent N โ
โโโโโโโฌโโโโโโโโดโโโโโโโฌโโโโโโโดโโโโโโโฌโโโโโโโดโโโโโโโฌโโโโโโโดโโโโโโฌโโโโโโโ
โ โ โ โ โ
โโโโโโโผโโโโโโโฌโโโโโโโผโโโโโโโฌโโโโโโโโผโโโโโโฌโโโโโโโผโโโโโโฌโโโโโโผโโโโโโโ
โ Memory โ Events โ Tools โ Providers โ Security โ
โโโโโโโโโโโโโโดโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโดโโโโโโโโโโโโโ
๐ Quick Start
- Install GRAMI AI:
pip install grami-ai
# Optional features
pip install grami-ai[gemini] # For Google Gemini support
pip install grami-ai[ollama] # For Ollama support
pip install grami-ai[dev] # For development tools
- Create your first agent:
from grami_ai.agent import AsyncAgent
from grami_ai.tools import CalculatorTool, WebScraperTool
from grami_ai.memory import InMemoryAbstractMemory
async def main():
# Initialize agent with tools and memory
agent = AsyncAgent(
tools=[CalculatorTool(), WebScraperTool()],
memory=InMemoryAbstractMemory(),
model="gemini-pro" # or "gpt-3.5-turbo", "ollama/llama2", etc.
)
# Execute a task
result = await agent.execute_task({
"objective": "Calculate and explain",
"input": "What is 25 * 48?"
})
print(result)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
- Assign tasks to your agent:
from grami_ai.core.constants import Priority
# Create a task
task = {
"objective": "Analyze this text document",
"input": "Sample text for analysis",
"priority": Priority.HIGH
}
# Assign and execute task
result = await agent.execute_task(task)
๐ฆ Core Components
1. Agents
- Base agent class with common functionality
- Customizable behavior and capabilities
- Built-in task queue and priority handling
2. Memory
- Multiple backend support (Redis, PostgreSQL, MongoDB)
- Automatic data serialization/deserialization
- Configurable retention and indexing
3. Events
- Real-time communication between agents
- Kafka-based event streaming
- Event filtering and routing
4. Tools
- Extensible tool interface
- Built-in common tools
- Custom tool development support
5. Configuration
- Environment-specific settings
- Secure secrets management
- Dynamic configuration updates
๐ API Configuration
Environment Variables
To use GRAMI AI with external services, you'll need to set up environment variables:
- Copy
.env.example
to.env
- Fill in your API credentials
# Copy example environment file
cp .env.example .env
# Edit .env with your credentials
nano .env
Required Environment Variables
GOOGLE_SEARCH_API_KEY
: Google Custom Search API KeyGOOGLE_GEMINI_API_KEY
: Google Gemini API KeyGOOGLE_SEARCH_ENGINE_ID
: Google Custom Search Engine ID
Security Best Practices
- Never commit
.env
to version control - Use a
.gitignore
file to exclude sensitive files - Rotate API keys regularly
- Use environment-specific configurations
API Key Management
# Secure API key retrieval
api_key = os.environ.get('YOUR_API_KEY')
if not api_key:
raise ValueError("API key not found. Set the environment variable.")
๐ง Development
- Clone the repository:
git clone https://github.com/yourusername/grami-ai.git
cd grami-ai
- Create a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install development dependencies:
pip install -e ".[dev]"
- Run tests:
pytest tests/
๐ Documentation
Full documentation is available at docs.grami-ai.org
๐ค Contributing
We welcome contributions! Please see our Contributing Guide for details.
๐ License
This project is licensed under the MIT License - see the LICENSE file for details.
๐ Acknowledgments
- YAFATEK Solutions - The company behind GRAMI AI
- The amazing open-source community
- All our contributors and users
Vision
Grami AI is designed to revolutionize how developers build AI agents by providing a modern, async-first framework that emphasizes:
- Asynchronous by Default: Built from the ground up for high-performance, non-blocking operations
- Modular Architecture: Plug-and-play components for tools, memory, and LLM providers
- Type Safety: Comprehensive type hints and protocol-based interfaces
- Production Ready: Built for reliability and scalability in real-world applications
๐ Advanced Example: Digital Marketing Agency AI
๐ Multi-Agent Digital Marketing System
GRAMI introduces a cutting-edge Digital Marketing Agency AI that demonstrates:
- Real-time client interaction
- Distributed task management
- AI-powered strategy generation
- Kafka-based inter-agent communication
- Redis-backed global state management
Key Components
- Growth Manager: Client interaction and task delegation
- Market Researcher: Trend and market analysis
- Content Creator: Strategic content generation
- Social Media Manager: Platform-specific content planning
Example Usage
from examples.digital_marketing_agency import DigitalMarketingAgency
async def main():
agency = DigitalMarketingAgency()
await agency.start_agency_interaction()
Features
- Asynchronous agent communication
- Intelligent task distribution
- Gemini-powered natural language processing
- Scalable microservice architecture
๐ง Prerequisites
- Redis server running
- Kafka broker configured
- Google Gemini API key
๐ฆ Dependencies
pip install grami-ai[kafka,redis]
๐ก๏ธ Security & Privacy
- Environment-based configuration
- Secure API key management
- Minimal data persistence
๐ Advanced Use Cases
๐จ Instagram Content Creation Agent
GRAMI introduces a cutting-edge Instagram Content Creation Agent that leverages multi-stage web search and AI-driven content generation:
from grami_ai.examples import InstagramContentAgent
# Create content for sustainable fashion
content_brief = {
'topic': 'Sustainable Fashion',
'target_audience': 'Millennials & Gen Z',
'tone': 'Inspirational and Authentic'
}
agent = InstagramContentAgent()
content = await agent.create_instagram_content(content_brief)
Key Features:
- Multi-stage web search for trend insights
- AI-powered content generation
- Platform-specific content variations
- Comprehensive hashtag ecosystem
- Interactive content strategies
๐ Supported Platforms
- TikTok (Coming Soon)
- YouTube Shorts (Coming Soon)
๐ Analytics & Insights
- Trend tracking
- Engagement prediction
- Content performance analysis
Quick Start
# Install the base package
pip install grami-ai
# Install with optional features
pip install grami-ai[gemini] # For Google Gemini support
pip install grami-ai[ollama] # For Ollama support
pip install grami-ai[dev] # For development tools
Basic Usage
from grami_ai.agent import AsyncAgent
from grami_ai.tools import CalculatorTool, WebScraperTool
from grami_ai.memory import InMemoryAbstractMemory
async def main():
# Initialize agent with tools and memory
agent = AsyncAgent(
tools=[CalculatorTool(), WebScraperTool()],
memory=InMemoryAbstractMemory(),
model="gemini-pro" # or "gpt-3.5-turbo", "ollama/llama2", etc.
)
# Execute tasks asynchronously
result = await agent.execute(
"Calculate the square root of the number of words on example.com"
)
print(result)
# Run the async function
import asyncio
asyncio.run(main())
Architecture
Grami AI is built on three core pillars:
1. Tools System
- Protocol-based tool definition
- Async execution
- Built-in validation and error handling
- Extensive tool library (web scraping, calculations, file operations, etc.)
from grami_ai.core.interfaces import AsyncTool
from typing import Any, Dict
class MyCustomTool(AsyncTool):
async def run(self, input_data: str, **kwargs) -> Dict[str, Any]:
# Your async tool implementation
return {"result": processed_data}
2. Memory Management
- Flexible memory backends (In-Memory, Redis, Custom)
- Automatic context management
- Memory size limits and pruning strategies
from grami_ai.memory import RedisMemory
memory = RedisMemory(
redis_url="redis://localhost:6379",
max_items=1000,
ttl=3600 # 1 hour
)
3. LLM Integration
- Support for multiple LLM providers
- Streaming responses
- Token management
- Retry mechanisms
from grami_ai.llm import GeminiProvider
llm = GeminiProvider(
api_key="your-api-key",
model="gemini-pro",
max_tokens=1000
)
Advanced Features
Parallel Tool Execution
async def parallel_execution():
tools = [WebScraperTool(), CalculatorTool(), StringTool()]
results = await asyncio.gather(*[
tool.execute(input_data)
for tool in tools
])
Custom Memory Backend
from grami_ai.core.interfaces import AsyncMemoryProvider
class MyCustomMemory(AsyncMemoryProvider):
async def add_item(self, key: str, value: dict) -> None:
# Implementation
pass
async def get_items(self, key: str) -> list:
# Implementation
pass
Error Handling
from grami_ai.exceptions import ToolExecutionError
try:
result = await agent.execute("complex task")
except ToolExecutionError as e:
print(f"Tool execution failed: {e}")
Documentation
Comprehensive documentation is available at grami-ai.readthedocs.io, including:
- Getting Started Guide
- API Reference
- Advanced Usage Examples
- Contributing Guidelines
Contributing
We welcome contributions! Here's how you can help:
- Fork the repository
- Create a feature branch
- Write your changes
- Write tests for your changes
- Submit a pull request
# Development setup
git clone https://github.com/grami-ai/framework.git
cd framework
pip install -e .[dev]
pytest
License
MIT License
Copyright (c) 2024 YAFATEK Solutions
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Links
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file grami_ai-0.2.309.tar.gz
.
File metadata
- Download URL: grami_ai-0.2.309.tar.gz
- Upload date:
- Size: 59.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3aaaaef873913d686f92e775315a8f0af3a803fd2186d1bc5cf76a2cd6863e15 |
|
MD5 | 300118ef4969846cf75d31f4b3bd8c9e |
|
BLAKE2b-256 | ee2b2be500b6e39be8eb4ffa31bf8fad44411593f4e9d2fee5bcf64fc74547ea |
File details
Details for the file grami_ai-0.2.309-py3-none-any.whl
.
File metadata
- Download URL: grami_ai-0.2.309-py3-none-any.whl
- Upload date:
- Size: 60.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 906620e2c2adfb0b9e55e9c8d8cf24cf6b05c9aac65f7ac72915d2d3f75eff9b |
|
MD5 | 0b755de84734c9492eba38e3d6082eaa |
|
BLAKE2b-256 | 1a2c96a9fb205122caf31f654fc7c333d4ac50e6f46774d8f9166aff31bdd735 |