A dynamic and flexible AI agent framework for building intelligent, multi-modal AI agents
Project description
GRAMI-AI: Dynamic AI Agent Framework
Vision and Purpose
GRAMI-AI is a revolutionary, async-first AI agent framework designed to solve complex computational challenges through intelligent, collaborative agent interactions. Our mission is to create a highly flexible, extensible platform that empowers developers to build sophisticated, context-aware AI systems capable of adapting and collaborating across diverse domains.
Framework Philosophy
The core philosophy of GRAMI-AI is to provide an abstraction layer that:
- Enables dynamic creation of AI agents with specific roles and capabilities
- Supports multiple Language Models (LLMs) with their unique interfaces
- Allows seamless integration of communication protocols
- Provides flexible memory management
- Supports extensible tool ecosystems
Key Architectural Goals
1. Dynamic Agent Creation
- Define agents with precise roles (e.g., Growth Manager, Content Creator)
- Customize system instructions and behavior
- Support multi-modal capabilities (text, image, video generation)
2. LLM Abstraction
- Unified interface for different LLMs (Gemini, OpenAI, Anthropic, Ollama)
- Handle provider-specific nuances (prompt building, chat interfaces)
- Flexible function/tool integration
3. Communication Interfaces
- Support multiple protocols (WebSocket, REST, Kafka)
- Enable inter-agent communication
- Implement global state management
4. Memory Management
- Pluggable memory providers (In-Memory, Redis, DynamoDB)
- Persistent conversation and task history
- Scalable state storage
5. Tool Ecosystem
- Default utility tools (Kafka publisher, web search)
- Easy custom tool development
- Provider-specific function handling
Roadmap and TODO List
Short-term Goals
- Complete core agent abstraction
- Implement multi-LLM support
- Develop comprehensive documentation
- Create robust testing framework
- Implement basic memory providers
Mid-term Goals
- Advanced inter-agent communication
- Kafka integration for agent crews
- WebSocket chat interfaces
- S3 and cloud storage integrations
- Payment solution abstractions
Long-term Vision
- Machine learning-driven agent optimization
- Advanced context and memory management
- Multi-language support
- Enterprise-grade security features
- Community-driven tool marketplace
Development Checklist
Core Framework Development
- Implement base
Agent
abstract class - Create LLM provider abstraction layer
- Develop async communication interfaces
- Implement memory management system
- Design tool integration mechanism
LLM Provider Support
- Google Gemini integration
- OpenAI GPT integration
- Anthropic Claude integration
- Ollama local LLM support
- Add provider-specific function calling
Communication Protocols
- WebSocket implementation
- REST API endpoint design
- Kafka message broker integration
- gRPC support
- Inter-agent communication protocol
Memory Management
- In-memory state storage
- Redis persistent storage
- DynamoDB scalable storage
- Conversation history tracking
- State serialization/deserialization
Tool Ecosystem
- Web search utility tool
- Data analysis tool
- Image generation tool
- Code generation tool
- Custom tool development framework
Testing and Quality
- Unit tests for core components
- Integration tests for agent interactions
- Performance benchmarking
- Security vulnerability scanning
- Continuous integration setup
Documentation
- Comprehensive API documentation
- Detailed usage examples
- Developer guides
- Architecture overview
- Contribution guidelines
Community and Extensibility
- Open-source contribution model
- Plugin architecture
- Community tool repository
- Regular maintenance and updates
- Feedback and feature request system
Conceptual Agent Example
agent = AsyncAgent(
llm=GeminiProvider(), # LLM Provider
memory=RedisMemoryProvider(), # Memory Management
tools=[ # Extensible Tools
KafkaPublisher(),
WebSearchTool(),
ContentAnalysisTool()
],
system_instructions="You are a Growth Manager...", # Role Definition
communication_interface=WebSocketInterface(),
storage=S3StorageProvider(), # Optional Storage
crew_config={ # Optional Crew Configuration
'team_members': ['ContentCreator', 'Researcher'],
'communication_protocol': 'kafka'
}
)
Community Contribution
We envision GRAMI-AI as a collaborative ecosystem where developers can:
- Create and share custom tools
- Develop new LLM integrations
- Build memory providers
- Implement communication interfaces
- Contribute to core framework development
Current Capabilities
- Async-first architecture
- Basic agent creation
- Gemini LLM integration
- Simple tool support
- Advanced inter-agent communication
- Multiple memory providers
- Comprehensive LLM support
Getting Started
pip install grami-ai
License
MIT License - Empowering open-source innovation
About YAFATEK Solutions
Pioneering AI innovation through flexible, powerful frameworks.
Contact & Support
- Email: support@yafatek.dev
- GitHub: GRAMI-AI Issues
Star ⭐ the project if you believe in collaborative AI innovation!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file grami_ai-0.3.110.tar.gz
.
File metadata
- Download URL: grami_ai-0.3.110.tar.gz
- Upload date:
- Size: 10.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 48b42a9dc7687d650f27c6d5885e10a46bf9502c4422bd3c52a5b642564420ec |
|
MD5 | 5db78845bb447bce3aca195a11476a54 |
|
BLAKE2b-256 | 24896706467bd23aeacd454d61f35c01bb8e0f0d251a985aca28988e626a5d5f |
File details
Details for the file grami_ai-0.3.110-py3-none-any.whl
.
File metadata
- Download URL: grami_ai-0.3.110-py3-none-any.whl
- Upload date:
- Size: 12.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ebf4b4e146c9a835ba5829fde9eae403a59ccd9259e15d3f6592fc81fbd62a9b |
|
MD5 | 7f405ceb1bf89c2eaad11e45ddf2eb98 |
|
BLAKE2b-256 | dd113a95aafac1dfbbbdd597dd2f0cd0103fc86e516ad134a1376bf213d8cdc1 |