A dynamic and flexible AI agent framework for building intelligent, multi-modal AI agents
Project description
GRAMI-AI: Dynamic AI Agent Framework
Overview
GRAMI-AI is a cutting-edge, async-first AI agent framework designed to solve complex computational challenges through intelligent, collaborative agent interactions. Built with unprecedented flexibility, this library empowers developers to create sophisticated, context-aware AI systems that can adapt, learn, and collaborate across diverse domains.
Key Features
- Dynamic AI Agent Creation
- Multi-LLM Support (Gemini, OpenAI, Anthropic, Ollama)
- Extensible Tool Ecosystem
- Multiple Communication Interfaces
- Flexible Memory Management
- Secure and Scalable Architecture
Installation
Using pip
pip install grami-ai
From Source
git clone https://github.com/YAFATEK/grami-ai.git
cd grami-ai
pip install -e .
Quick Start
Basic Agent Creation
from grami.agent import Agent
from grami.providers import GeminiProvider
# Initialize a Gemini-powered Agent
agent = Agent(
name="AssistantAI",
role="Helpful Digital Assistant",
llm_provider=GeminiProvider(api_key="YOUR_API_KEY"),
tools=[WebSearchTool(), CalculatorTool()]
)
# Send a message
response = await agent.send_message("Help me plan a trip to Paris")
print(response)
Examples
We provide a variety of example implementations to help you get started:
Available Examples
-
Basic Agents
examples/gemini_example.py
: Multi-tool Gemini Agentexamples/openai_example.py
: OpenAI-powered Agentexamples/anthropic_example.py
: Claude Agent Implementation
-
Advanced Scenarios
examples/agent_crew_example.py
: Multi-Agent Collaborationexamples/web_research_agent.py
: Web Research Specialistexamples/content_creation_agent.py
: Content Generation Agent
-
Tool Integration
examples/custom_tool_example.py
: Creating Custom Toolsexamples/kafka_communication_example.py
: Inter-Agent Communication
Development Checklist
Core Framework Design
- Implement
AsyncAgent
base class with dynamic configuration - Create flexible system instruction definition mechanism
- Design abstract LLM provider interface
- Develop dynamic role and persona assignment system
- Implement multi-modal agent capabilities (text, image, video)
LLM Provider Abstraction
- Unified interface for diverse LLM providers
- Google Gemini integration (start_chat(), send_message())
- OpenAI ChatGPT integration
- Anthropic Claude integration
- Ollama local LLM support
- Standardize function/tool calling across providers
- Dynamic prompt engineering support
- Provider-specific configuration handling
Communication Interfaces
- WebSocket real-time communication
- REST API endpoint design
- Kafka inter-agent communication
- gRPC support
- Event-driven agent notification system
- Secure communication protocols
Memory and State Management
- Pluggable memory providers
- In-memory state storage
- Redis distributed memory
- DynamoDB scalable storage
- S3 content storage
- Conversation and task history tracking
- Global state management for agent crews
- Persistent task and interaction logs
Tool and Function Ecosystem
- Extensible tool integration framework
- Default utility tools
- Kafka message publisher
- Web search utility
- Content analysis tool
- Provider-specific function calling support
- Community tool marketplace
- Easy custom tool development
Agent Crew Collaboration
- Inter-agent communication protocol
- Workflow and task delegation mechanisms
- Approval and review workflows
- Notification and escalation systems
- Dynamic team composition
- Shared context and memory management
Use Case Implementations
- Digital Agency workflow template
- Growth Manager agent
- Content Creator agent
- Trend Researcher agent
- Media Creation agent
- Customer interaction management
- Approval and revision cycles
Security and Compliance
- Secure credential management
- Role-based access control
- Audit logging
- Compliance with data protection regulations
Performance and Scalability
- Async-first design
- Horizontal scaling support
- Performance benchmarking
- Resource optimization
Testing and Quality
- Comprehensive unit testing
- Integration testing for agent interactions
- Mocking frameworks for LLM providers
- Continuous integration setup
Documentation and Community
- Detailed API documentation
- Comprehensive developer guides
- Example use case implementations
- Contribution guidelines
- Community tool submission process
- Regular maintenance and updates
Future Roadmap
- Payment integration solutions
- Advanced context understanding
- Multi-language support
- Enterprise-grade security features
- AI agent marketplace
Documentation
For detailed documentation, visit our Documentation Website
Contributing
We welcome contributions! Please see our Contribution Guidelines
License
MIT License - Empowering open-source innovation
About YAFATEK Solutions
Pioneering AI innovation through flexible, powerful frameworks.
Contact & Support
- Email: support@yafatek.dev
- GitHub: GRAMI-AI Issues
Star ⭐ the project if you believe in collaborative AI innovation!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file grami_ai-0.3.118.tar.gz
.
File metadata
- Download URL: grami_ai-0.3.118.tar.gz
- Upload date:
- Size: 10.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c76bef2e6539dcb48b0ead3c3fd29643785b00eae342d2b77ecc3903372004da |
|
MD5 | 7bf1493bc60122dbdd746409da414cf9 |
|
BLAKE2b-256 | babaa3b7fab465b1c6dc5222046f6a6567180ae35ed7be8db8a76eac0d822484 |
File details
Details for the file grami_ai-0.3.118-py3-none-any.whl
.
File metadata
- Download URL: grami_ai-0.3.118-py3-none-any.whl
- Upload date:
- Size: 13.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba5dc309f88739deb202d44a25e00b26eaa664f0c228e0eb1048c8fe7a971e85 |
|
MD5 | ad590e55d1c8ad7abc128b2dd16c19b8 |
|
BLAKE2b-256 | ffdb2c07002b0c1f5477e470e1ba1a32c70abf536ea148eeabbbbc98da9bfa0e |