Skip to main content

A dynamic and flexible AI agent framework for building intelligent, multi-modal AI agents

Project description

GRAMI-AI: Dynamic AI Agent Framework

Version Python Versions License GitHub Stars

📋 Table of Contents

🌟 Overview

GRAMI-AI is a cutting-edge, async-first AI agent framework designed to solve complex computational challenges through intelligent, collaborative agent interactions. Built with unprecedented flexibility, this library empowers developers to create sophisticated, context-aware AI systems that can adapt, learn, and collaborate across diverse domains.

🚀 Key Features

  • Async AI Agent Creation
  • Multi-LLM Support (Gemini, OpenAI, Anthropic, Ollama)
  • Extensible Tool Ecosystem
  • Multiple Communication Interfaces
  • Flexible Memory Management
  • Secure and Scalable Architecture

💻 Installation

Using pip

pip install grami-ai==0.3.130

From Source

git clone https://github.com/YAFATEK/grami-ai.git
cd grami-ai
pip install -e .

🎬 Quick Start

import asyncio
from grami.agent import AsyncAgent
from grami.providers.gemini_provider import GeminiProvider

async def main():
    agent = AsyncAgent(
        name="AssistantAI",
        llm=GeminiProvider(api_key="YOUR_API_KEY"),
        system_instructions="You are a helpful digital assistant."
    )

    response = await agent.send_message("Hello, how can you help me today?")
    print(response)

asyncio.run(main())

🔧 Example Configurations

1. Async Agent with Memory

from grami.memory.lru import LRUMemory

agent = AsyncAgent(
    name="MemoryAgent",
    llm=provider,
    memory=LRUMemory(capacity=100)
)

2. Async Agent with Streaming

async for token in agent.stream_message("Tell me a story"):
    print(token, end='', flush=True)

💾 Memory Providers

GRAMI-AI supports multiple memory providers:

  1. LRU Memory: Local in-memory cache
  2. Redis Memory: Distributed memory storage

LRU Memory Example

from grami.memory import LRUMemory

memory = LRUMemory(capacity=50)

Redis Memory Example

from grami.memory import RedisMemory

memory = RedisMemory(
    host='localhost',
    port=6379,
    capacity=100
)

🛠 Working with Tools

Creating Tools

Tools are simple Python functions used by AI agents:

def get_current_time() -> str:
    return datetime.now().strftime("%Y-%m-%d %H:%M:%S")

def calculate_age(birth_year: int) -> int:
    current_year = datetime.now().year
    return current_year - birth_year

Adding Tools to AsyncAgent

agent = AsyncAgent(
    name="ToolsAgent",
    llm=gemini_provider,
    tools=[get_current_time, calculate_age]
)

🌐 Communication Interfaces

GRAMI-AI supports multiple communication interfaces, including WebSocket for real-time, bidirectional communication between agents.

WebSocket Communication

Create a WebSocket-enabled agent using the built-in setup_communication() method:

from grami.agent import AsyncAgent
from grami.providers.gemini_provider import GeminiProvider
from grami.memory.lru import LRUMemory

# Create an agent with WebSocket communication
agent = AsyncAgent(
    name="ToolsAgent", 
    llm=GeminiProvider(api_key=os.getenv('GEMINI_API_KEY')),
    memory=LRUMemory(capacity=100),
    tools=[calculate_area, generate_fibonacci]
)

# Setup WebSocket communication
communication_interface = await agent.setup_communication(
    host='localhost', 
    port=0  # Dynamic port selection
)

Key Features of WebSocket Communication

  • Real-time bidirectional messaging
  • Dynamic port allocation
  • Seamless tool and LLM interaction
  • Secure communication channel

Example Use Cases

  • Distributed AI systems
  • Real-time collaborative agents
  • Interactive tool-based services
  • Event-driven agent communication

🗺 Development Roadmap

Core Framework Design

  • Implement AsyncAgent base class with dynamic configuration
  • Create flexible system instruction definition mechanism
  • Design abstract LLM provider interface
  • Develop dynamic role and persona assignment system
  • Comprehensive async example configurations
    • Memory with streaming
    • Memory without streaming
    • No memory with streaming
    • No memory without streaming
  • Implement multi-modal agent capabilities (text, image, video)

LLM Provider Abstraction

  • Unified interface for diverse LLM providers
    • Google Gemini integration (start_chat(), send_message())
      • Basic message sending
      • Streaming support
      • Memory integration
    • OpenAI ChatGPT integration
      • Basic message sending
      • Streaming implementation
      • Memory support
    • Anthropic Claude integration
    • Ollama local LLM support
  • Standardize function/tool calling across providers
  • Dynamic prompt engineering support
  • Provider-specific configuration handling

Communication Interfaces

  • WebSocket real-time communication
  • REST API endpoint design
  • Kafka inter-agent communication
  • gRPC support
  • Event-driven agent notification system
  • Secure communication protocols

Memory and State Management

  • Pluggable memory providers
    • In-memory state storage
    • Redis distributed memory
    • DynamoDB scalable storage
    • S3 content storage
  • Conversation and task history tracking
  • Global state management for agent crews
  • Persistent task and interaction logs
  • Advanced memory indexing
  • Memory compression techniques

Tool and Function Ecosystem

  • Extensible tool integration framework
  • Default utility tools
    • Kafka message publisher
    • Web search utility
    • Content analysis tool
  • Provider-specific function calling support
  • Community tool marketplace
  • Easy custom tool development

Agent Crew Collaboration

  • Inter-agent communication protocol
  • Workflow and task delegation mechanisms
  • Approval and review workflows
  • Notification and escalation systems
  • Dynamic team composition
  • Shared context and memory management

Use Case Implementations

  • Digital Agency workflow template
    • Growth Manager agent
    • Content Creator agent
    • Trend Researcher agent
    • Media Creation agent
  • Customer interaction management
  • Approval and revision cycles

Security and Compliance

  • Secure credential management
  • Role-based access control
  • Audit logging
  • Compliance with data protection regulations

Performance and Scalability

  • Async-first design
  • Horizontal scaling support
  • Performance benchmarking
  • Resource optimization

Testing and Quality

  • Comprehensive unit testing
  • Integration testing for agent interactions
  • Mocking frameworks for LLM providers
  • Continuous integration setup

Documentation and Community

  • Detailed API documentation
  • Comprehensive developer guides
  • Example use case implementations
  • Contribution guidelines
  • Community tool submission process
  • Regular maintenance and updates

Future Roadmap

  • Payment integration solutions
  • Advanced agent collaboration patterns
  • Specialized industry-specific agents
  • Enhanced security features
  • Extended provider support

🤝 Contributing

Contributions are welcome! Please read our contributing guidelines and code of conduct.

📄 License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grami_ai-0.3.131.tar.gz (20.7 kB view details)

Uploaded Source

Built Distribution

grami_ai-0.3.131-py3-none-any.whl (27.7 kB view details)

Uploaded Python 3

File details

Details for the file grami_ai-0.3.131.tar.gz.

File metadata

  • Download URL: grami_ai-0.3.131.tar.gz
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for grami_ai-0.3.131.tar.gz
Algorithm Hash digest
SHA256 b1a1b51798319840615348d12a05ae11e1954a6be7effd2dc75153d7be40d80f
MD5 7fe43bfcd144fceb1e90154339b4ab0e
BLAKE2b-256 75bce65313b749124d232142f99058b6746c3466ea56b4ad1f6f46b2d2989b61

See more details on using hashes here.

File details

Details for the file grami_ai-0.3.131-py3-none-any.whl.

File metadata

  • Download URL: grami_ai-0.3.131-py3-none-any.whl
  • Upload date:
  • Size: 27.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for grami_ai-0.3.131-py3-none-any.whl
Algorithm Hash digest
SHA256 6b356b4c9945e124e35921f8d86958c9eef61d152e1d5d3598ae209481184d29
MD5 aca928655b1e57ec91b05024ad83bf9d
BLAKE2b-256 5484d62fa5ecf2e41f44b3037a1b0ef01a51d5dd72c580318995d7709f5d710e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page