Skip to main content

Visualize Graph Algorithms

Project description

Visualisation of Graph Algorithms

Description

The package aims to create visual outputs for popular graph algorithms.
Currently: BFS and DFS
I plan to implement more algorithms: Prim's and Kruskal's Algorithms etc

It is not just limited to getting a visual output, but the algorithms will be optimised by using heuristics for non-polynomial time algorithms. This project aims to create a better understanding of the working of graph algorithms, improve the computation time and optimising the algorithms. It could be used by analysts as well as students and teachers, as a teaching aid.

To run the package: pip install graph-algo-vis

Sample Code to run the package

BFS and DFS

Import:
from graph_algo_vis import dfs_traversal

Instantiation:
g = dfs_traversal.DFS()

Visualize the input graph:
g.draw_graph("input.txt")

Visualize the result of DFS:
g.depth_first_search("input.txt")

Topological Sort

Import:
from graph_algo_vis import topological_sort

Instantiation:
g = topological_sort.Top_Sort()

Visualize the input graph and result:
g.topological_sort("input.txt")

Pre requisites

To run this package run you must have matplotlib and networkx libraries installed.

INPUT

Input is taken from the file

input.txt

Sample input for BFS and DFS

4
0 5 10 5
0 0 5 0
0 10 0 0
0 0 10 0
0

First line contains the number of nodes,say n.(Nodes are numbered as 0,1,2,...(n-1) ) Followed by n*n weighted matrix. Disconnected egdes are represented by negative weight. Last line contains the source node.(i.e, the node from which the BFS or DFS should begin)

Sample input for Topological Sort:

6
1 2
1 3
2 3
2 4
3 4
3 5

First line contains the number of edges.
Followed by the edges eg 1 2 represents an edge from 1 to 2

Draw Graph

Graph is first drawn from the weighted matrix input from the user with weights shown. Edges are marked with black.

1

BFS Traversal

Iterative BFS is performed, using a queue. Each time an edge is encountered, it is marked with red on the graph.

DFS traversal

Recursive DFS is performed, resulting DFS forests are stored in a stack.

2

Topological Sort

Topological Sort is performed using Depth First Search (DFS).

PS: Topological Sorting for a graph is not possible if the graph is not a Directed Acyclic Graph (DAG).
Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for every directed edge u v, vertex u comes before v in the ordering.

Green node - denotes the starting node.
Red node - denotes the final node.

3

Time Complexity

0(m+n)
where m - number of edges
n - number of nodes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graph_algo_vis-0.2.tar.gz (5.1 kB view hashes)

Uploaded Source

Built Distribution

graph_algo_vis-0.2-py3-none-any.whl (6.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page