Skip to main content

Load graph datasets.

Project description

Graph Datasets

PYPI Latest Release

Installation

  • python>=3.8
  • torch>=1.12
  • torch_geometric>=2.0
  • dgl>=1.1
$ python -m pip install graph_datasets

Usage

See Graph Datasets for docs.

from graph_datasets import load_data

graph, label, n_clusters = load_data(
    dataset_name='cora',
    directory='./data',
    source='pyg',
    verbosity=1,
)

Statistics

idx source dataset n_nodes n_feats n_edges n_clusters
1 pyg cora 2,708 1,433 10,556 7
2 pyg citeseer 3,327 3,703 9,104 6
3 pyg pubmed 19,717 500 88,648 3
4 pyg corafull 19,793 8,710 126,842 70
5 pyg reddit 232,965 602 114,615,892 41
6 pyg chameleon 2,277 2,325 62,742 5
7 pyg squirrel 5,201 2,089 396,706 5
8 pyg actor 7,600 932 53,318 5
9 pyg cornell 183 1,703 554 5
10 pyg texas 183 1,703 558 5
11 pyg wisconsin 251 1,703 900 5
12 pyg computers 13,752 767 491,722 10
13 pyg photo 7,650 745 238,162 8
14 pyg cs 18,333 6,805 163,788 15
15 pyg physics 34,493 8,415 495,924 5
16 pyg wikics 11,701 300 431,206 10
17 dgl cora 2,708 1,433 10,556 7
18 dgl citeseer 3,327 3,703 9,104 6
19 dgl pubmed 19,717 500 88,648 3
20 dgl corafull 19,793 8,710 126,842 70
21 dgl reddit 232,965 602 114,615,892 41
22 dgl chameleon 2,277 2,325 62,742 5
23 dgl squirrel 5,201 2,089 396,706 5
24 dgl actor 7,600 932 53,318 5
25 dgl cornell 183 1,703 554 5
26 dgl texas 183 1,703 558 5
27 dgl wisconsin 251 1,703 900 5
28 ogb products 2,449,029 100 123,718,024 47
29 ogb arxiv 169,343 128 2,315,598 40
30 sdcn dblp 4,057 334 7,056 4
31 sdcn acm 3,025 1,870 26,256 3
32 cola blogcatalog 5,196 8,189 343,486 6
33 cola flickr 7,575 12,047 479,476 9
34 linkx snap-patents 2,923,922 269 27,945,090 5
35 linkx pokec 1,632,803 65 44,603,928 3
36 linkx genius 421,961 12 1,845,736 2
37 linkx arxiv-year 169,343 128 2,315,598 5
38 linkx Penn94 41,554 4,814 2,724,458 3
39 linkx twitch-gamers 168,114 7 13,595,114 2
40 linkx wiki 1,925,342 600 485,014,138 6
41 linkx cornell 183 1,703 554 5
42 linkx chameleon 2,277 2,325 62,742 5
43 linkx film 7,600 932 53,318 5
44 linkx squirrel 5,201 2,089 396,706 5
45 linkx texas 183 1,703 558 5
46 linkx wisconsin 251 1,703 900 5
47 linkx yelp-chi 45,954 32 7,693,958 2
48 linkx deezer-europe 28,281 31,241 185,504 2
49 linkx Amherst41 2,235 1,193 181,908 3
50 linkx Cornell5 18,660 4,735 1,581,554 3
51 linkx Johns Hopkins55 5,180 2,406 373,172 3
52 linkx Reed98 962 745 37,624 3
53 critical roman-empire 22,662 300 65,854 18
54 critical amazon-ratings 24,492 300 186,100 5
55 critical minesweeper 10,000 7 78,804 2
56 critical tolokers 11,758 10 1,038,000 2
57 critical questions 48,921 301 307,080 2
58 critical squirrel 2,223 2,089 93,996 5
59 critical chameleon 890 2,325 17,708 5

Requirements

See requirements-dev.txt, requirements.txt and pyproject.toml:dependencies.

Contributing

See CONTRIBUTING.md.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graph_datasets-0.14.0.tar.gz (69.7 kB view details)

Uploaded Source

Built Distribution

graph_datasets-0.14.0-py3-none-any.whl (22.6 kB view details)

Uploaded Python 3

File details

Details for the file graph_datasets-0.14.0.tar.gz.

File metadata

  • Download URL: graph_datasets-0.14.0.tar.gz
  • Upload date:
  • Size: 69.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for graph_datasets-0.14.0.tar.gz
Algorithm Hash digest
SHA256 4688534690dd0dba66eab5ddabd43c036370e6a09b72da6a898347bf848b9188
MD5 18423bdd4b957237fcf6c13818fe62b8
BLAKE2b-256 b44a746c30b5d0a0bfd832cc0e7332b527ffd9193bd45b6c6b4cdd17e131dc6a

See more details on using hashes here.

File details

Details for the file graph_datasets-0.14.0-py3-none-any.whl.

File metadata

File hashes

Hashes for graph_datasets-0.14.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1d8634f7d49107cb18ee78f47ec0dae8c31bc1666d7e4f28f2157be48f89859f
MD5 26a147472f1b925599d52bd6fabea904
BLAKE2b-256 808eb2323c1fec6047d5eb52f7c6944eb8d83db40d0809fe665b67412eb9b3d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page