Skip to main content

Protein & Interactomic Graph Construction for Machine Learning

Project description

Docs DOI:10.1101/2020.07.15.204701 Project Status: Active – The project has reached a stable, usable state and is being actively developed. CodeFactor Quality Gate Status Bugs Maintainability Rating Reliability Rating Gitter chat License: MIT Code style: black banner

Documentation | Paper | Tutorials

Protein & Interactomic Graph Library

This package provides functionality for producing geometric representations of protein and RNA structures, and biological interaction networks. We provide compatibility with standard PyData formats, as well as graph objects designed for ease of use with popular deep learning libraries.

What's New?

Example usage

Creating a Protein Graph

Tutorial (Residue-level) | Tutorial - Atomic | Docs

from graphein.protein.config import ProteinGraphConfig
from graphein.protein.graphs import construct_graph

config = ProteinGraphConfig()
g = construct_graph(config=config, pdb_code="3eiy")

Creating a Protein Graph from the AlphaFold Protein Structure Database

Tutorial | Docs

from graphein.protein.config import ProteinGraphConfig
from graphein.protein.graphs import construct_graph
from graphein.protein.utils import download_alphafold_structure

config = ProteinGraphConfig()
fp = download_alphafold_structure("Q5VSL9", aligned_score=False)
g = construct_graph(config=config, pdb_path=fp)

Creating a Protein Mesh

Tutorial | Docs

from graphein.protein.config import ProteinMeshConfig
from graphein.protein.meshes import create_mesh

verts, faces, aux = create_mesh(pdb_code="3eiy", config=config)

Creating an RNA Graph

Tutorial | Docs

from graphein.rna.graphs import construct_rna_graph
# Build the graph from a dotbracket & optional sequence
rna = construct_rna_graph(dotbracket='..(((((..(((...)))..)))))...',
                          sequence='UUGGAGUACACAACCUGUACACUCUUUC')

Creating a Protein-Protein Interaction Graph

Tutorial | Docs

from graphein.ppi.config import PPIGraphConfig
from graphein.ppi.graphs import compute_ppi_graph
from graphein.ppi.edges import add_string_edges, add_biogrid_edges

config = PPIGraphConfig()
protein_list = ["CDC42", "CDK1", "KIF23", "PLK1", "RAC2", "RACGAP1", "RHOA", "RHOB"]

g = compute_ppi_graph(config=config,
                      protein_list=protein_list,
                      edge_construction_funcs=[add_string_edges, add_biogrid_edges]
                     )

Creating a Gene Regulatory Network Graph

Tutorial | Docs

from graphein.grn.config import GRNGraphConfig
from graphein.grn.graphs import compute_grn_graph
from graphein.grn.edges import add_regnetwork_edges, add_trrust_edges

config = GRNGraphConfig()
gene_list = ["AATF", "MYC", "USF1", "SP1", "TP53", "DUSP1"]

g = compute_grn_graph(
    gene_list=gene_list,
    edge_construction_funcs=[
        partial(add_trrust_edges, trrust_filtering_funcs=config.trrust_config.filtering_functions),
        partial(add_regnetwork_edges, regnetwork_filtering_funcs=config.regnetwork_config.filtering_functions),
    ],
)

Installation

The dev environment includes GPU Builds (CUDA 11.1) for each of the deep learning libraries integrated into graphein.

git clone https://www.github.com/a-r-j/graphein
cd graphein
conda create env -f environment-dev.yml
pip install -e .

A lighter install can be performed with:

git clone https://www.github.com/a-r-j/graphein
cd graphein
conda create env -f environment.yml
pip install -e .

Citing Graphein

Please consider citing graphein if it proves useful in your work.

@article{Jamasb2020,
  doi = {10.1101/2020.07.15.204701},
  url = {https://doi.org/10.1101/2020.07.15.204701},
  year = {2020},
  month = jul,
  publisher = {Cold Spring Harbor Laboratory},
  author = {Arian Rokkum Jamasb and Pietro Lio and Tom Blundell},
  title = {Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Protein Structures}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphein-1.0.1.tar.gz (98.8 kB view details)

Uploaded Source

Built Distribution

graphein-1.0.1-py2.py3-none-any.whl (103.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file graphein-1.0.1.tar.gz.

File metadata

  • Download URL: graphein-1.0.1.tar.gz
  • Upload date:
  • Size: 98.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for graphein-1.0.1.tar.gz
Algorithm Hash digest
SHA256 e03b3b83980ee07209f449d65b22d71f14e4e38715580299781e1711fccb5fd5
MD5 788e817d1edbb81f3a74a5fcc5ec9ec4
BLAKE2b-256 896fb26df468555a0d20537d8b6ee1f4fe4d9eaa0ac64e05c1231af0af2c3416

See more details on using hashes here.

File details

Details for the file graphein-1.0.1-py2.py3-none-any.whl.

File metadata

  • Download URL: graphein-1.0.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 103.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for graphein-1.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f790bc3513477206b72e752953fe83a8b8d9507c83b90896882b779a6f4b6470
MD5 1617f711fd7fc6eedccc524dbdccd171
BLAKE2b-256 80eb4bd4946bb40dbb31386c574d1508098f24c654799d31efe56663106d2511

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page