This library add some extra funcionalities to graphene-django to facilitate the graphql use without Relay, allow paginations and filtering integration and add some extra directives
Project description
Graphene-Django-Flufy
This package builds on top of Graphene-Django-Extra
and it adds some extra functionalities to graphene-django to facilitate the graphql use without Relay:
- Allow pagination and filtering on Queries.
- Allow defining DjangoRestFramework serializers based on Mutations.
- Allow using Directives on Queries and Fragments.
NOTE: Subscription support still sits in moved to graphene-django-subscriptions. It may be moved later
Installation
For installing graphene-django-flufy, just run this command in your shell:
pip install graphene-django-flufy
Documentation:
Extra functionalities:
Fields:
- DjangoObjectField
- DjangoFilterListField
- DjangoFilterPaginateListField
- DjangoListObjectField (Recommended for Queries definition)
Mutations:
- DjangoSerializerMutation (Recommended for Mutations definition)
Types:
- DjangoListObjectType (Recommended for Types definition)
- DjangoInputObjectType
- DjangoSerializerType (Recommended for quick queries and mutations definitions)
Paginations:
- LimitOffsetGraphqlPagination
- PageGraphqlPagination
Queries and Mutations examples:
This is a basic example of graphene-django-extras package use. You can configure global params for DjangoListObjectType classes pagination definitions on settings.py like this:
GRAPHENE_DJANGO_FLUFY = {
'DEFAULT_PAGINATION_CLASS': 'graphene_django_flufy.paginations.LimitOffsetGraphqlPagination',
'DEFAULT_PAGE_SIZE': 20,
'MAX_PAGE_SIZE': 50,
'CACHE_ACTIVE': True,
'CACHE_TIMEOUT': 300 # seconds
}
1- Types Definition:
from django.contrib.auth.models import User
from graphene_django_flufy import DjangoListObjectType, DjangoSerializerType, DjangoObjectType
from graphene_django_flufy.paginations import LimitOffsetGraphqlPagination
from .serializers import UserSerializer
class UserType(DjangoObjectType):
class Meta:
model = User
description = " Type definition for a single user "
filter_fields = {
"id": ("exact", ),
"first_name": ("icontains", "iexact"),
"last_name": ("icontains", "iexact"),
"username": ("icontains", "iexact"),
"email": ("icontains", "iexact"),
"is_staff": ("exact", ),
}
class UserListType(DjangoListObjectType):
class Meta:
description = " Type definition for user list "
model = User
pagination = LimitOffsetGraphqlPagination(default_limit=25, ordering="-username") # ordering can be: string, tuple or list
class UserModelType(DjangoSerializerType):
""" With this type definition it't necessary a mutation definition for user's model """
class Meta:
description = " User model type definition "
serializer_class = UserSerializer
pagination = LimitOffsetGraphqlPagination(default_limit=25, ordering="-username") # ordering can be: string, tuple or list
filter_fields = {
"id": ("exact", ),
"first_name": ("icontains", "iexact"),
"last_name": ("icontains", "iexact"),
"username": ("icontains", "iexact"),
"email": ("icontains", "iexact"),
"is_staff": ("exact", ),
}
2- You can to define InputTypes for use on mutations:
from graphene_django_flufy import DjangoInputObjectType
class UserInput(DjangoInputObjectType):
class Meta:
description = " User InputType definition to use as input on an Arguments class on traditional Mutations "
model = User
3- You can define traditional mutations that use InputTypes or Mutations based on DRF serializers:
import graphene
from graphene_django_flufy import DjangoSerializerMutation
from .serializers import UserSerializer
from .types import UserType
from .input_types import UserInputType
class UserSerializerMutation(DjangoSerializerMutation):
"""
DjangoSerializerMutation auto implement Create, Delete and Update functions
"""
class Meta:
description = " DRF serializer based Mutation for Users "
serializer_class = UserSerializer
class UserMutation(graphene.Mutation):
"""
On traditional mutation classes definition you must implement the mutate function
"""
user = graphene.Field(UserType, required=False)
class Arguments:
new_user = graphene.Argument(UserInput)
class Meta:
description = " Graphene traditional mutation for Users "
@classmethod
def mutate(cls, root, info, *args, **kwargs):
...
4- Defining the Schema file:
import graphene
from graphene_django_flufy import DjangoObjectField, DjangoListObjectField, DjangoFilterPaginateListField,
DjangoFilterListField, LimitOffsetGraphqlPagination
from .types import UserType, UserListType, UserModelType
from .mutations import UserMutation, UserSerializerMutation
class Queries(graphene.ObjectType):
# Possible User list queries definitions
users = DjangoListObjectField(UserListType, description='All Users query')
users1 = DjangoFilterPaginateListField(UserType, pagination=LimitOffsetGraphqlPagination())
users2 = DjangoFilterListField(UserType)
users3 = DjangoListObjectField(UserListType, filterset_class=UserFilter, description='All Users query')
# Defining a query for a single user
# The DjangoObjectField have a ID type input field, that allow filter by id and is't necessary to define resolve function
user = DjangoObjectField(UserType, description='Single User query')
# Another way to define a query to single user
user1 = UserListType.RetrieveField(description='User List with pagination and filtering')
# Exist two ways to define single or list user queries with DjangoSerializerType
user_retrieve1, user_list1 = UserModelType.QueryFields(
description='Some description message for both queries',
deprecation_reason='Some deprecation message for both queries'
)
user_retrieve2 = UserModelType.RetrieveField(
description='Some description message for retrieve query',
deprecation_reason='Some deprecation message for retrieve query'
)
user_list2 = UserModelType.ListField(
description='Some description message for list query',
deprecation_reason='Some deprecation message for list query'
)
class Mutations(graphene.ObjectType):
user_create = UserSerializerMutation.CreateField(deprecation_reason='Some one deprecation message')
user_delete = UserSerializerMutation.DeleteField()
user_update = UserSerializerMutation.UpdateField()
# Exist two ways to define mutations with DjangoSerializerType
user_create1, user_delete1, user_update1 = UserModelType.MutationFields(
description='Some description message for create, delete and update mutations',
deprecation_reason='Some deprecation message for create, delete and update mutations'
)
user_create2 = UserModelType.CreateField(description='Description message for create')
user_delete2 = UserModelType.DeleteField(description='Description message for delete')
user_update2 = UserModelType.UpdateField(description='Description message for update')
traditional_user_mutation = UserMutation.Field()
5- Directives settings:
For use Directives you must follow two simple steps:
- You must add 'graphene_django_flufy.ExtraGraphQLDirectiveMiddleware' to your GRAPHENE dict config on your settings.py:
# settings.py
GRAPHENE = {
'SCHEMA_INDENT': 4,
'MIDDLEWARE': [
'graphene_django_flufy.ExtraGraphQLDirectiveMiddleware'
]
}
- You must add the directives param with your custom directives to your schema definition. This module comes with some common directives for you, these directives allow to you format strings, numbers, lists, and dates (optional), and you can load like this:
# schema.py
from graphene_django_flufy import all_directives
schema = graphene.Schema(
query=RootQuery,
mutation=RootMutation,
directives=all_directives
)
NOTE: Date directive depends on dateutil module, so if you do not have installed it, this directive will not be available. You can install dateutil module manually:
pip install python-dateutil
or like this:
pip install graphene_django_flufy[date]
That's all !!!
6- Complete Directive list:
FOR NUMBERS:
- FloorGraphQLDirective: Floors value. Supports both String and Float fields.
- CeilGraphQLDirective: Ceils value. Supports both String and Float fields.
FOR LIST:
- ShuffleGraphQLDirective: Shuffle the list in place.
- SampleGraphQLDirective: Take a 'k' int argument and return a k length list of unique elements chosen from the taken list
FOR DATE:
- DateGraphQLDirective: Take a optional 'format' string argument and format the date from resolving the field by dateutil module with the 'format' format. Default format is: 'DD MMM YYYY HH:mm:SS' equivalent to '%d %b %Y %H:%M:%S' python format.
FOR STRING:
- DefaultGraphQLDirective: Take a 'to' string argument. Default to given value if None or ""
- Base64GraphQLDirective: Take a optional ("encode" or "decode") 'op' string argument(default='encode'). Encode or decode the string taken.
- NumberGraphQLDirective: Take a 'as' string argument. String formatting like a specify Python number formatting.
- CurrencyGraphQLDirective: Take a optional 'symbol' string argument(default="$"). Prepend the symbol argument to taken string and format it like a currency.
- LowercaseGraphQLDirective: Lowercase the taken string.
- UppercaseGraphQLDirective: Uppercase the taken string.
- CapitalizeGraphQLDirective: Return the taken string with its first character capitalized and the rest lowered.
- CamelCaseGraphQLDirective: CamelCase the taken string.
- SnakeCaseGraphQLDirective: SnakeCase the taken string.
- KebabCaseGraphQLDirective: SnakeCase the taken string.
- SwapCaseGraphQLDirective: Return the taken string with uppercase characters converted to lowercase and vice versa.
- StripGraphQLDirective: Take a optional 'chars' string argument(default=" "). Return the taken string with the leading and trailing characters removed. The 'chars' argument is not a prefix or suffix; rather, all combinations of its values are stripped.
- TitleCaseGraphQLDirective: Return the taken string title-cased, where words start with an uppercase character and the remaining characters are lowercase.
- CenterGraphQLDirective: Take a 'width' string argument and a optional 'fillchar' string argument(default=" "). Return the taken string centered with the 'width' argument as new length. Padding is done using the specified 'fillchar' argument. The original string is returned if 'width' argument is less than or equal to taken string length.
- ReplaceGraphQLDirective: Take two strings arguments 'old' and 'new', and a optional integer argument 'count'. Return the taken string with all occurrences of substring 'old' argument replaced by 'new' argument value. If the optional argument 'count' is given, only the first 'count' occurrences are replaced.
7- Queries's examples:
{
allUsers(username_Icontains:"john"){
results(limit:5, offset:5){
id
username
firstName
lastName
}
totalCount
}
allUsers1(lastName_Iexact:"Doe", limit:5, offset:0){
id
username
firstName
lastName
}
allUsers2(firstName_Icontains: "J"){
id
username
firstName
lastName
}
user(id:2){
id
username
firstName
}
user1(id:2){
id
username
firstName
}
}
8- Mutations's examples:
mutation{
userCreate(newUser:{username:"test", password:"test*123"}){
user{
id
username
firstName
lastName
}
ok
errors{
field
messages
}
}
userDelete(id:1){
ok
errors{
field
messages
}
}
userUpdate(newUser:{id:1, username:"John"}){
user{
id
username
}
ok
errors{
field
messages
}
}
}
9- Directives's examples:
Let's suppose that we have this query:
query{
allUsers{
result{
id
firstName
lastName
dateJoined
lastLogin
}
}
}
And return this data:
{
"data": {
"allUsers": {
"results": [
{
"id": "1",
"firstName": "JOHN",
"lastName": "",
"dateJoined": "2017-06-20 09:40:30",
"lastLogin": "2017-08-05 21:05:02"
},
{
"id": "2",
"firstName": "Golden",
"lastName": "GATE",
"dateJoined": "2017-01-02 20:36:45",
"lastLogin": "2017-06-20 10:15:31"
},
{
"id": "3",
"firstName": "Nike",
"lastName": "just do it!",
"dateJoined": "2017-08-30 16:05:20",
"lastLogin": "2017-12-05 09:23:09"
}
]
}
}
}
As we see, some data it's missing or just not have the format that we like it, so let's go to format the output data that we desired:
query{
allUsers{
result{
id
firstName @capitalize
lastName @default(to: "Doe") @title_case
dateJoined @date(format: "DD MMM YYYY HH:mm:SS")
lastLogin @date(format: "time ago")
}
}
}
And we get this output data:
{
"data": {
"allUsers": {
"results": [
{
"id": "1",
"firstName": "John",
"lastName": "Doe",
"dateJoined": "20 Jun 2017 09:40:30",
"lastLogin": "4 months, 12 days, 15 hours, 27 minutes and 58 seconds ago"
},
{
"id": "2",
"firstName": "Golden",
"lastName": "Gate",
"dateJoined": "02 Jan 2017 20:36:45",
"lastLogin": "5 months, 28 days, 2 hours, 17 minutes and 53 seconds ago"
},
{
"id": "3",
"firstName": "Nike",
"lastName": "Just Do It!",
"dateJoined": "30 Aug 2017 16:05:20",
"lastLogin": "13 days, 3 hours, 10 minutes and 31 seconds ago"
}
]
}
}
}
As we see, the directives are an easy way to format output data on queries, and it's can be put together like a chain.
List of possible date's tokens: "YYYY", "YY", "WW", "W", "DD", "DDDD", "d", "ddd", "dddd", "MM", "MMM", "MMMM", "HH", "hh", "mm", "ss", "A", "ZZ", "z".
You can use this shortcuts too:
- "time ago"
- "iso": "YYYY-MMM-DDTHH:mm:ss"
- "js" or "javascript": "ddd MMM DD YYYY HH:mm:ss"
Change Log:
v0.1.0:
1. Update dependencies
2. Upgrade graphene-django dependency to version > 3.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file graphene_django_flufy-0.1.1.tar.gz
.
File metadata
- Download URL: graphene_django_flufy-0.1.1.tar.gz
- Upload date:
- Size: 39.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.2 CPython/3.10.8 Linux/5.15.0-1022-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9bd31750d30528972fa066f7266e3188d5d4dd924d44c4ee00165592f2e2a164 |
|
MD5 | 93c1a64fbd9978f99cf55198b5922e54 |
|
BLAKE2b-256 | f47760ec4869e53c7b7e9ea1271f429915fe06ab5ece5549a3baa291b53f2180 |
File details
Details for the file graphene_django_flufy-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: graphene_django_flufy-0.1.1-py3-none-any.whl
- Upload date:
- Size: 42.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.2 CPython/3.10.8 Linux/5.15.0-1022-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a59ad08143b654b113ff5806dc0c1f39e12a8bbf65543748f9446cf0e5f0739c |
|
MD5 | 00577f075f505447468036ea88b41d98 |
|
BLAKE2b-256 | c6e2b7b43848e743aef5f3cbf75d295a7161af11f912bb34b3c6910357867c05 |