Skip to main content

Optimize database access inside graphene queries.

Project description

graphene-django-optimizer

build status coverage PyPI version python version django version

Optimize queries executed by graphene-django automatically, using select_related, prefetch_related and only methods of Django QuerySet.

Install

pip install graphene-django-optimizer

Note: If you are using Graphene V2, please install version 0.8. v0.9 and forward will support only Graphene V3

Usage

Having the following schema based on the tutorial of graphene-django (notice the use of gql_optimizer)

# cookbook/ingredients/schema.py
import graphene

from graphene_django.types import DjangoObjectType
import graphene_django_optimizer as gql_optimizer

from cookbook.ingredients.models import Category, Ingredient


class CategoryType(DjangoObjectType):
    class Meta:
        model = Category


class IngredientType(DjangoObjectType):
    class Meta:
        model = Ingredient


class Query(graphene.ObjectType):
    all_categories = graphene.List(CategoryType)
    all_ingredients = graphene.List(IngredientType)

    def resolve_all_categories(root, info):
        return gql_optimizer.query(Category.objects.all(), info)

    def resolve_all_ingredients(root, info):
        return gql_optimizer.query(Ingredient.objects.all(), info)

We will show some graphql queries and the queryset that will be executed.

Fetching all the ingredients with the related category:

{
  allIngredients {
    id
    name
    category {
        id
        name
    }
  }
}
# optimized queryset:
ingredients = (
    Ingredient.objects
    .select_related('category')
    .only('id', 'name', 'category__id', 'category__name')
)

Fetching all the categories with the related ingredients:

{
  allCategories {
    id
    name
    ingredients {
        id
        name
    }
  }
}
# optimized queryset:
categories = (
    Category.objects
    .only('id', 'name')
    .prefetch_related(Prefetch(
        'ingredients',
        queryset=Ingredient.objects.only('id', 'name'),
    ))
)

Advanced usage

Sometimes we need to have a custom resolver function. In those cases, the field can't be auto optimized. So we need to use gql_optimizer.resolver_hints decorator to indicate the optimizations.

If the resolver returns a model field, we can use the model_field argument:

import graphene
import graphene_django_optimizer as gql_optimizer


class ItemType(gql_optimizer.OptimizedDjangoObjectType):
    product = graphene.Field('ProductType')

    @gql_optimizer.resolver_hints(
        model_field='product',
    )
    def resolve_product(root, info):
        # check if user have permission for seeing the product
        if info.context.user.is_anonymous():
            return None
        return root.product

This will automatically optimize any subfield of product.

Now, if the resolver uses related fields, you can use the select_related argument:

import graphene
import graphene_django_optimizer as gql_optimizer


class ItemType(gql_optimizer.OptimizedDjangoObjectType):
    name = graphene.String()

    @gql_optimizer.resolver_hints(
        select_related=('product', 'shipping'),
        only=('product__name', 'shipping__name'),
    )
    def resolve_name(root, info):
        return '{} {}'.format(root.product.name, root.shipping.name)

Notice the usage of the type OptimizedDjangoObjectType, which enables optimization of any single node queries.

Finally, if your field has an argument for filtering results, you can use the prefetch_related argument with a function that returns a Prefetch instance as the value.

from django.db.models import Prefetch
import graphene
import graphene_django_optimizer as gql_optimizer


class CartType(gql_optimizer.OptimizedDjangoObjectType):
    items = graphene.List(
        'ItemType',
        product_id=graphene.ID(),
    )

    @gql_optimizer.resolver_hints(
        prefetch_related=lambda info, product_id: Prefetch(
            'items',
            queryset=gql_optimizer.query(Item.objects.filter(product_id=product_id), info),
            to_attr='gql_product_id_' + product_id,
        ),
    )
    def resolve_items(root, info, product_id):
        return getattr(root, 'gql_product_id_' + product_id)

With these hints, any field can be optimized.

Optimize with non model fields

Sometimes we need to have a custom non model fields. In those cases, the optimizer would not optimize with the Django .only() method. So if we still want to optimize with the .only() method, we need to use disable_abort_only option:

class IngredientType(gql_optimizer.OptimizedDjangoObjectType):
    calculated_calories = graphene.String()

    class Meta:
        model = Ingredient

    def resolve_calculated_calories(root, info):
        return get_calories_for_ingredient(root.id)


class Query(object):
    all_ingredients = graphene.List(IngredientType)

    def resolve_all_ingredients(root, info):
        return gql_optimizer.query(Ingredient.objects.all(), info, disable_abort_only=True)

Annotations

The queryset can be optimized with an annotation when and only if a field is requested. To do so, the annotate resolver hint can be used.

class RecipeType(gql_optimizer.OptimizedDjangoObjectType):
    ingredient_count = graphene.Int()
    class Meta:
        model = Recipe
        fields = ('id',)

    @gql_optimizer.resolver_hints(
        annotate={
            'gql_ingredient_count': Count('ingredients')
        }
    )
    def resolve_ingredient_count(root, info):
        return getattr(root, 'gql_ingredient_count')
class Query(object):
    all_recipes = graphene.List(RecipeType)
    def resolve_all_recipes(root, info):
        return gql_optimizer.query(Recipe.objects.all(), info)

When using annotations there are two caveats.

  1. The queryset will not be annotated if the optimization fails.
  2. If an annotation is used in a related query that will usually result in a optimized select_related, prefetch_related is used instead, adding one additional query. See example below.
class RecipeType(gql_optimizer.OptimizedDjangoObjectType):
    ingredient_count = graphene.Int()
    class Meta:
        model = Recipe
        fields = ('id',)

    @gql_optimizer.resolver_hints(
        annotate={
            'gql_ingredient_count': Count('ingredients')
        }
    )
    def resolve_ingredient_count(root, info):
        return getattr(root, 'gql_ingredient_count')
class IngredientType(gql_optimizer.OptimizedDjangoObjectType):
    recipe = gql_optimizer.field(
        graphene.Field(RecipeType), model_field='recipe',
    )
    class Meta:
        model = Ingredient
        fields = ('id', name')
class Query(object):
    all_ingredients = graphene.List(IngredientType)
    def resolve_all_ingredients(root, info):
        return gql_optimizer.query(Ingredient.objects.all(), info)

The GraphQL query.

query {
  allIngredients {
     id
     name
     recipe {
       id
       name
       ingredientCount
     }
  }
}

Will resolve in two SQL queries. One to fetch all ingredients, one to prefetch all recipes for those ingredients.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphene-django-optimizer-patch-0.9.1.0.tar.gz (12.1 kB view details)

Uploaded Source

File details

Details for the file graphene-django-optimizer-patch-0.9.1.0.tar.gz.

File metadata

File hashes

Hashes for graphene-django-optimizer-patch-0.9.1.0.tar.gz
Algorithm Hash digest
SHA256 2479ed9a51dfb09a01bc08485a8ff9b5aed66e71becc5bd1eb1b312748c50c75
MD5 177bdf5294216b0493014fb774e04543
BLAKE2b-256 3c1d9647c65210d2b36ffca5db04275cb470e2a1a5fd29e6e76aac86ea86fc17

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page