Skip to main content

Graphene Elasticsearch/OpenSearch (DSL) integration

Project description

Elasticsearch (DSL)/ OpenSearch (DSL) integration for Graphene.

PyPI Version Supported Python versions Build Status Documentation Status GPL-2.0-only OR LGPL-2.1-or-later Coverage

Prerequisites

  • Graphene 2.x. Support for Graphene 1.x is not intended.

  • Python 3.6, 3.7, 3.8, 3.9 and 3.10. Support for Python 2 is not intended.

  • Elasticsearch 6.x, 7.x. Support for Elasticsearch 5.x is not intended.

  • OpenSearch 1.x, 2.x.

Main features and highlights

  • Implemented ElasticsearchConnectionField and ElasticsearchObjectType are the core classes to work with graphene.

  • Pluggable backends for searching, filtering, ordering, etc. Don’t like existing ones? Override, extend or write your own.

  • Search backend.

  • Filter backend.

  • Ordering backend.

  • Pagination.

  • Highlighting backend.

  • Source filter backend.

  • Faceted search backend (including global aggregations).

  • Post filter backend.

  • Score filter backend.

  • Query string backend.

  • Simple query string backend.

See the Road-map for what’s yet planned to implemented.

Do you need a similar tool for Django REST Framework? Check django-elasticsearch-dsl-drf.

Demo

Check the live demo app (FastAPI + Graphene 2 + Elasticsearch 7) hosted on Heroku and bonsai.io.

Documentation

Documentation is available on Read the Docs.

Installation

Install latest stable version from PyPI:

pip install graphene-elastic

Or latest development version from GitHub:

pip install https://github.com/barseghyanartur/graphene-elastic/archive/master.zip

Examples

Install requirements

pip install -r requirements.txt

Populate sample data

The following command will create indexes for User and Post documents and populate them with sample data:

./scripts/populate_elasticsearch_data.sh

Sample document definition

search_index/documents/post.py

See examples/search_index/documents/post.py for full example.

import datetime
from elasticsearch_dsl import (
    Boolean,
    Date,
    Document,
    InnerDoc,
    Keyword,
    Nested,
    Text,
    Integer,
)

class Comment(InnerDoc):

    author = Text(fields={'raw': Keyword()})
    content = Text(analyzer='snowball')
    created_at = Date()

    def age(self):
        return datetime.datetime.now() - self.created_at


class Post(Document):

    title = Text(
        fields={'raw': Keyword()}
    )
    content = Text()
    created_at = Date()
    published = Boolean()
    category = Text(
        fields={'raw': Keyword()}
    )
    comments = Nested(Comment)
    tags = Text(
        analyzer=html_strip,
        fields={'raw': Keyword(multi=True)},
        multi=True
    )
    num_views = Integer()

    class Index:
        name = 'blog_post'
        settings = {
            'number_of_shards': 1,
            'number_of_replicas': 1,
            'blocks': {'read_only_allow_delete': None},
        }

Sample apps

Sample Flask app

Run the sample Flask app:

./scripts/run_flask.sh

Open Flask graphiql client

http://127.0.0.1:8001/graphql

Sample Django app

Run the sample Django app:

./scripts/run_django.sh runserver

Open Django graphiql client

http://127.0.0.1:8000/graphql

ConnectionField example

ConnectionField is the most flexible and feature rich solution you have. It uses filter backends which you can tie to your needs the way you want in a declarative manner.

Sample schema definition

import graphene
from graphene_elastic import (
    ElasticsearchObjectType,
    ElasticsearchConnectionField,
)
from graphene_elastic.filter_backends import (
    FilteringFilterBackend,
    SearchFilterBackend,
    HighlightFilterBackend,
    OrderingFilterBackend,
    DefaultOrderingFilterBackend,
)
from graphene_elastic.constants import (
    LOOKUP_FILTER_PREFIX,
    LOOKUP_FILTER_TERM,
    LOOKUP_FILTER_TERMS,
    LOOKUP_FILTER_WILDCARD,
    LOOKUP_QUERY_EXCLUDE,
    LOOKUP_QUERY_IN,
)

# Object type definition
class Post(ElasticsearchObjectType):

    class Meta(object):
        document = PostDocument
        interfaces = (Node,)
        filter_backends = [
            FilteringFilterBackend,
            SearchFilterBackend,
            HighlightFilterBackend,
            OrderingFilterBackend,
            DefaultOrderingFilterBackend,
        ]

        # For `FilteringFilterBackend` backend
        filter_fields = {
            # The dictionary key (in this case `title`) is the name of
            # the corresponding GraphQL query argument. The dictionary
            # value could be simple or complex structure (in this case
            # complex). The `field` key points to the `title.raw`, which
            # is the field name in the Elasticsearch document
            # (`PostDocument`). Since `lookups` key is provided, number
            # of lookups is limited to the given set, while term is the
            # default lookup (as specified in `default_lookup`).
            'title': {
                'field': 'title.raw',
                # Available lookups
                'lookups': [
                    LOOKUP_FILTER_TERM,
                    LOOKUP_FILTER_TERMS,
                    LOOKUP_FILTER_PREFIX,
                    LOOKUP_FILTER_WILDCARD,
                    LOOKUP_QUERY_IN,
                    LOOKUP_QUERY_EXCLUDE,
                ],
                # Default lookup
                'default_lookup': LOOKUP_FILTER_TERM,
            },

            # The dictionary key (in this case `category`) is the name of
            # the corresponding GraphQL query argument. Since no lookups
            # or default_lookup is provided, defaults are used (all lookups
            # available, term is the default lookup). The dictionary value
            # (in this case `category.raw`) is the field name in the
            # Elasticsearch document (`PostDocument`).
            'category': 'category.raw',

            # The dictionary key (in this case `tags`) is the name of
            # the corresponding GraphQL query argument. Since no lookups
            # or default_lookup is provided, defaults are used (all lookups
            # available, term is the default lookup). The dictionary value
            # (in this case `tags.raw`) is the field name in the
            # Elasticsearch document (`PostDocument`).
            'tags': 'tags.raw',

            # The dictionary key (in this case `num_views`) is the name of
            # the corresponding GraphQL query argument. Since no lookups
            # or default_lookup is provided, defaults are used (all lookups
            # available, term is the default lookup). The dictionary value
            # (in this case `num_views`) is the field name in the
            # Elasticsearch document (`PostDocument`).
            'num_views': 'num_views',
        }

        # For `SearchFilterBackend` backend
        search_fields = {
            'title': {'boost': 4},
            'content': {'boost': 2},
            'category': None,
        }

        # For `OrderingFilterBackend` backend
        ordering_fields = {
            # The dictionary key (in this case `tags`) is the name of
            # the corresponding GraphQL query argument. The dictionary
            # value (in this case `tags.raw`) is the field name in the
            # Elasticsearch document (`PostDocument`).
            'title': 'title.raw',

            # The dictionary key (in this case `created_at`) is the name of
            # the corresponding GraphQL query argument. The dictionary
            # value (in this case `created_at`) is the field name in the
            # Elasticsearch document (`PostDocument`).
            'created_at': 'created_at',

            # The dictionary key (in this case `num_views`) is the name of
            # the corresponding GraphQL query argument. The dictionary
            # value (in this case `num_views`) is the field name in the
            # Elasticsearch document (`PostDocument`).
            'num_views': 'num_views',
        }

        # For `DefaultOrderingFilterBackend` backend
        ordering_defaults = (
            '-num_views',  # Field name in the Elasticsearch document
            'title.raw',  # Field name in the Elasticsearch document
        )

        # For `HighlightFilterBackend` backend
        highlight_fields = {
            'title': {
                'enabled': True,
                'options': {
                    'pre_tags': ["<b>"],
                    'post_tags': ["</b>"],
                }
            },
            'content': {
                'options': {
                    'fragment_size': 50,
                    'number_of_fragments': 3
                }
            },
            'category': {},
        }

# Query definition
class Query(graphene.ObjectType):
    all_post_documents = ElasticsearchConnectionField(Post)

# Schema definition
schema = graphene.Schema(query=Query)
Filter
Sample queries

Since we didn’t specify any lookups on category, by default all lookups are available and the default lookup would be term. Note, that in the {value:"Elastic"} part, the value stands for default lookup, whatever it has been set to.

query PostsQuery {
  allPostDocuments(filter:{category:{value:"Elastic"}}) {
    edges {
      node {
        id
        title
        category
        content
        createdAt
        comments
      }
    }
  }
}

But, we could use another lookup (in example below - terms). Note, that in the {terms:["Elastic", "Python"]} part, the terms is the lookup name.

query PostsQuery {
  allPostDocuments(
        filter:{category:{terms:["Elastic", "Python"]}}
    ) {
    edges {
      node {
        id
        title
        category
        content
        createdAt
        comments
      }
    }
  }
}

Or apply a gt (range) query in addition to filtering:

{
  allPostDocuments(filter:{
        category:{term:"Python"},
        numViews:{gt:"700"}
    }) {
    edges {
      node {
        category
        title
        comments
        numViews
      }
    }
  }
}
Implemented filter lookups

The following lookups are available:

  • contains

  • ends_with (or endsWith for camelCase)

  • exclude

  • exists

  • gt

  • gte

  • in

  • is_null (or isNull for camelCase)

  • lt

  • lte

  • prefix

  • range

  • starts_with (or startsWith for camelCase)

  • term

  • terms

  • wildcard

See dedicated documentation on filter lookups for more information.

Ordering

Possible choices are ASC and DESC.

query {
  allPostDocuments(
        filter:{category:{term:"Photography"}},
        ordering:{title:ASC}
    ) {
    edges {
      node {
        category
        title
        content
        numViews
        tags
      }
    }
  }
}
Pagination

The first, last, before and after arguments are supported. By default number of results is limited to 100.

query {
  allPostDocuments(first:12) {
    pageInfo {
      startCursor
      endCursor
      hasNextPage
      hasPreviousPage
    }
    edges {
      cursor
      node {
        category
        title
        content
        numViews
      }
    }
  }
}
Highlighting

Simply, list the fields you want to highlight. This works only in combination with search.

query {
  allPostDocuments(
        search:{content:{value:"alice"}, title:{value:"alice"}},
        highlight:[category, content]
    ) {
    edges {
      node {
        title
        content
        highlight
      }
      cursor
    }
  }
}

Road-map

Road-map and development plans.

This package is designed after django-elasticsearch-dsl-drf and is intended to offer similar functionality.

Lots of features are planned to be released in the upcoming Beta releases:

  • Suggester backend.

  • Nested backend.

  • Geo-spatial backend.

  • Filter lookup geo_bounding_box (or geoBoundingBox for camelCase).

  • Filter lookup geo_distance (or geoDistance for camelCase).

  • Filter lookup geo_polygon (or geoPolygon for camelCase).

  • More-like-this backend.

Stay tuned or reach out if you want to help.

Testing

Project is covered with tests.

Testing with Docker

make docker-test

Running tests with virtualenv or tox

By defaults tests are executed against the Elasticsearch 7.x.

Run Elasticsearch 7.x with Docker

docker-compose up elasticsearch

Install test requirements

pip install -r requirements/test.txt

To test with all supported Python versions type:

tox

To test against specific environment, type:

tox -e py38-elastic7

To test just your working environment type:

./runtests.py

To run a single test module in your working environment type:

./runtests.py src/graphene_elastic/tests/test_filter_backend.py

To run a single test class in a given test module in your working environment type:

./runtests.py src/graphene_elastic/tests/test_filter_backend.py::FilterBackendElasticTestCase

Debugging

For development purposes, you could use the flask app (easy to debug). Standard pdb works (import pdb; pdb.set_trace()). If ipdb does not work well for you, use ptpdb.

Writing documentation

Keep the following hierarchy.

=====
title
=====

header
======

sub-header
----------

sub-sub-header
~~~~~~~~~~~~~~

sub-sub-sub-header
^^^^^^^^^^^^^^^^^^

sub-sub-sub-sub-header
++++++++++++++++++++++

sub-sub-sub-sub-sub-header
**************************

License

GPL-2.0-only OR LGPL-2.1-or-later

Support

For any security issues contact me at the e-mail given in the Author section. For overall issues, go to GitHub.

Author

Artur Barseghyan <artur.barseghyan@gmail.com>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphene-elastic-0.8.1.tar.gz (83.5 kB view details)

Uploaded Source

Built Distribution

graphene_elastic-0.8.1-py2.py3-none-any.whl (116.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file graphene-elastic-0.8.1.tar.gz.

File metadata

  • Download URL: graphene-elastic-0.8.1.tar.gz
  • Upload date:
  • Size: 83.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for graphene-elastic-0.8.1.tar.gz
Algorithm Hash digest
SHA256 2ee1f8adb5f82a81680172ef8240abc3ea723126f752a5c02efde07cc95c03ce
MD5 4b2582b38df5f0b03a087a4b78a7583d
BLAKE2b-256 2ec307117aa415f2df22bf5eade1dcbd8c9a95c004715a2efe66122a77fa2fa3

See more details on using hashes here.

File details

Details for the file graphene_elastic-0.8.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for graphene_elastic-0.8.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 14209df67ca7812fa150a42d958db530cc8ca42a0e1d9c9ea497b80962bca9c6
MD5 732f925d43cbf860d283f1122c040cf8
BLAKE2b-256 b25130c2e56da3bef5e163dfdbdd6e223bd62b4738193e598bde3b8e5746b9ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page