Skip to main content

Geometric Deep Learning Extension Library for TensorFlow and PyTorch

Project description

logo

TensorFLow or PyTorch? Both!

Python tensorflow pytorch pypi stars forks issues pypi

GraphGallery

GraphGallery is a gallery of state-of-the-arts graph neural networks for TensorFlow 2.x and PyTorch. GraphGallery 0.4.x is a total re-write from previous versions, and some things have changed.

👀 What's important

Difference between GraphGallery and Pytorch Geometric (PyG), Deep Graph Library (DGL), etc...

  • PyG and DGL are just like TensorFlow while GraphGallery is more like Keras
  • GraphGallery is more friendly to use
  • GraphGallery is more efficiient

🚀 Installation

  • Build from source (latest version)
git clone https://github.com/EdisonLeeeee/GraphGallery.git
cd GraphGallery
python setup.py install
  • Or using pip (stable version)
pip install -U graphgallery

🤖 Implementations

In detail, the following methods are currently implemented:

Semi-supervised models

General models

Defense models

Unsupervised models

⚡ Quick Start

Datasets

more details please refer to GraphData.

Planetoid

fixed datasets

from graphgallery.data import Planetoid
# set `verbose=False` to avoid additional outputs 
data = Planetoid('cora', verbose=False)
graph = data.graph
idx_train, idx_val, idx_test = data.split()
# idx_train:  training indices: 1D Numpy array
# idx_val:  validation indices: 1D Numpy array
# idx_test:  testing indices: 1D Numpy array
>>> graph
Graph(adj_matrix(2708, 2708), attr_matrix(2708, 2708), labels(2708,))

currently the supported datasets are:

>>> data.supported_datasets
('citeseer', 'cora', 'pubmed')

NPZDataset

more scalable datasets (stored with .npz)

from graphgallery.data import NPZDataset;
# set `verbose=False` to avoid additional outputs
data = NPZDataset('cora', verbose=False, standardize=False)
graph = data.graph
idx_train, idx_val, idx_test = data.split(random_state=42)
>>> graph
Graph(adj_matrix(2708, 2708), attr_matrix(2708, 2708), labels(2708,))

currently the supported datasets are:

>>> data.supported_datasets
('citeseer', 'citeseer_full', 'cora', 'cora_ml', 'cora_full', 
 'amazon_cs', 'amazon_photo', 'coauthor_cs', 'coauthor_phy', 
 'polblogs', 'pubmed', 'flickr', 'blogcatalog')

Tensor

  • Strided (dense) Tensor
>>> backend()
TensorFlow 2.1.2 Backend

>>> from graphgallery import transforms as T
>>> arr = [1, 2, 3]
>>> T.astensor(arr)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 2, 3], dtype=int32)>
  • Sparse Tensor
>>> import scipy.sparse as sp
>>> sp_matrix = sp.eye(3)
>>> T.astensor(sp_matrix)
<tensorflow.python.framework.sparse_tensor.SparseTensor at 0x7f1bbc205dd8>
  • also works for PyTorch, just like
>>> from graphgallery import set_backend
>>> set_backend('torch') # torch, pytorch or th
PyTorch 1.6.0+cu101 Backend

>>> T.astensor(arr)
tensor([1, 2, 3])

>>> T.astensor(sp_matrix)
tensor(indices=tensor([[0, 1, 2],
                       [0, 1, 2]]),
       values=tensor([1., 1., 1.]),
       size=(3, 3), nnz=3, layout=torch.sparse_coo)
  • To Numpy or Scipy sparse matrix
>>> tensor = T.astensor(arr)
>>> T.tensoras(tensor)
array([1, 2, 3])

>>> sp_tensor = T.astensor(sp_matrix)
>>> T.tensoras(sp_tensor)
<3x3 sparse matrix of type '<class 'numpy.float32'>'
    with 3 stored elements in Compressed Sparse Row format>
  • Or even convert one Tensor to another one
>>> tensor = T.astensor(arr, kind="T")
>>> tensor
<tf.Tensor: shape=(3,), dtype=int64, numpy=array([1, 2, 3])>
>>> T.tensor2tensor(tensor)
tensor([1, 2, 3])

>>> sp_tensor = T.astensor(sp_matrix, kind="T") # set kind="T" to convert to tensorflow tensor
>>> sp_tensor
<tensorflow.python.framework.sparse_tensor.SparseTensor at 0x7efb6836a898>
>>> T.tensor2tensor(sp_tensor)
tensor(indices=tensor([[0, 1, 2],
                       [0, 1, 2]]),
       values=tensor([1., 1., 1.]),
       size=(3, 3), nnz=3, layout=torch.sparse_coo)

Example of GCN model

from graphgallery.nn.models import GCN

model = GCN(graph, attr_transform="normalize_attr", device="CPU", seed=123)
# build your GCN model with default hyper-parameters
model.build()
# train your model. here idx_train and idx_val are numpy arrays
# verbose takes 0, 1, 2, 3, 4
his = model.train(idx_train, idx_val, verbose=1, epochs=100)
# test your model
# verbose takes 0, 1, 2
loss, accuracy = model.test(idx_test, verbose=1)
print(f'Test loss {loss:.5}, Test accuracy {accuracy:.2%}')

On Cora dataset:

Training...
100/100 [==============================] - 1s 14ms/step - loss: 1.0161 - acc: 0.9500 - val_loss: 1.4101 - val_acc: 0.7740 - time: 1.4180
Testing...
1/1 [==============================] - 0s 62ms/step - test_loss: 1.4123 - test_acc: 0.8120 - time: 0.0620
Test loss 1.4123, Test accuracy 81.20%

Customization

  • Build your model you can use the following statement to build your model
# one hidden layer with hidden units 32 and activation function RELU
>>> model.build(hiddens=32, activations='relu')

# two hidden layer with hidden units 32, 64 and all activation functions are RELU
>>> model.build(hiddens=[32, 64], activations='relu')

# two hidden layer with hidden units 32, 64 and activation functions RELU and ELU
>>> model.build(hiddens=[32, 64], activations=['relu', 'elu'])
  • Train your model
# train with validation
>>> his = model.train(idx_train, idx_val, verbose=1, epochs=100)
# train without validation
>>> his = model.train(idx_train, verbose=1, epochs=100)

here his is a tensorflow History instance.

  • Test you model
>>> loss, accuracy = model.test(idx_test, verbose=1)
Testing...
1/1 [==============================] - 0s 62ms/step - test_loss: 1.4123 - test_acc: 0.8120 - time: 0.0620
>>> print(f'Test loss {loss:.5}, Test accuracy {accuracy:.2%}')
Test loss 1.4123, Test accuracy 81.20%

Visualization

NOTE: you must install SciencePlots package for a better preview.

import matplotlib.pyplot as plt
with plt.style.context(['science', 'no-latex']):
    fig, axes = plt.subplots(1, 2, figsize=(15, 5))
    axes[0].plot(his.history['acc'], label='Train accuracy', linewidth=3)
    axes[0].plot(his.history['val_acc'], label='Val accuracy', linewidth=3)
    axes[0].legend(fontsize=20)
    axes[0].set_title('Accuracy', fontsize=20)
    axes[0].set_xlabel('Epochs', fontsize=20)
    axes[0].set_ylabel('Accuracy', fontsize=20)

    axes[1].plot(his.history['loss'], label='Training loss', linewidth=3)
    axes[1].plot(his.history['val_loss'], label='Validation loss', linewidth=3)
    axes[1].legend(fontsize=20)
    axes[1].set_title('Loss', fontsize=20)
    axes[1].set_xlabel('Epochs', fontsize=20)
    axes[1].set_ylabel('Loss', fontsize=20)

    plt.autoscale(tight=True)
    plt.show()        

visualization

Using TensorFlow/PyTorch Backend

>>> import graphgallery
>>> graphgallery.backend()
TensorFlow 2.1.0 Backend

>>> graphgallery.set_backend("pytorch")
PyTorch 1.6.0+cu101 Backend

GCN using PyTorch backend

# The following codes are the same with TensorFlow Backend
>>> from graphgallery.nn.models import GCN
>>> model = GCN(graph, attr_transform="normalize_attr", device="GPU", seed=123);
>>> model.build()
>>> his = model.train(idx_train, idx_val, verbose=1, epochs=100)
Training...
100/100 [==============================] - 0s 5ms/step - loss: 0.6813 - acc: 0.9214 - val_loss: 1.0506 - val_acc: 0.7820 - time: 0.4734
>>> loss, accuracy = model.test(idx_test, verbose=1)
Testing...
1/1 [==============================] - 0s 1ms/step - test_loss: 1.0131 - test_acc: 0.8220 - time: 0.0013
>>> print(f'Test loss {loss:.5}, Test accuracy {accuracy:.2%}')
Test loss 1.0131, Test accuracy 82.20%

❓ How to add your datasets

This is motivated by gnn-benchmark

from graphgallery.data import Graph

# Load the adjacency matrix A, attribute matrix X and labels vector y
# A - scipy.sparse.csr_matrix of shape [n_nodes, n_nodes]
# X - scipy.sparse.csr_matrix or np.ndarray of shape [n_nodes, n_atts]
# y - np.ndarray of shape [n_nodes]

mydataset = Graph(adj_matrix=A, attr_matrix=X, labels=y)
# save dataset
mydataset.to_npz('path/to/mydataset.npz')
# load dataset
mydataset = Graph.from_npz('path/to/mydataset.npz')

❓ How to define your models

TODO

😎 More Examples

Please refer to the examples directory.

⭐ TODO List

  • Add PyTorch models support
  • Add more GNN models (TF and Torch backend)
  • Support for more tasks, e.g., graph Classification and link prediction
  • Support for more types of graphs, e.g., Heterogeneous graph
  • Add Docstrings and Documentation (Building)

😘 Acknowledgement

This project is motivated by Pytorch Geometric, Tensorflow Geometric and Stellargraph, and the original implementations of the authors, thanks for their excellent works!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphgallery-0.4.2.tar.gz (86.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

graphgallery-0.4.2-py3-none-any.whl (183.8 kB view details)

Uploaded Python 3

File details

Details for the file graphgallery-0.4.2.tar.gz.

File metadata

  • Download URL: graphgallery-0.4.2.tar.gz
  • Upload date:
  • Size: 86.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for graphgallery-0.4.2.tar.gz
Algorithm Hash digest
SHA256 1a256b6d4ccd9c0707c93ebaa7709dc50e27d33047de4eba658648c2921adb93
MD5 4d4d3ee94e35f0f5fff834a25314a218
BLAKE2b-256 22fd5d6541c89dbbaeac32fbc45acc9524292d12509c9fad3ab75103ca3d245e

See more details on using hashes here.

File details

Details for the file graphgallery-0.4.2-py3-none-any.whl.

File metadata

  • Download URL: graphgallery-0.4.2-py3-none-any.whl
  • Upload date:
  • Size: 183.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for graphgallery-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 76e051cd0a24497b75c88c29fd9b3d14ce91dd7aa2c84a15bc5099cc0377ec52
MD5 bb433cc4aea9e43bddef24d65b159644
BLAKE2b-256 94877a6bd2656b9721a9217e618f06502ebd45e1a2396085dc95c2e36853bdda

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page