Skip to main content

A Gallery for Benchmarking Graph Neural Networks.

Project description

logo

TensorFLow or PyTorch? Both!

Python tensorflow pytorch pypi license

GraphGallery

GraphGallery is a gallery for benchmarking Graph Neural Networks (GNNs) with TensorFlow 2.x and PyTorch backend. GraphGallery 0.6.x is a total re-write from previous versions, and some things have changed.

NEWS:

  • PyG backend and DGL backend now are available in GraphGallery
  • GraphGallery now supports Multiple Graph for different tasks

👀 What's important

Differences between GraphGallery and Pytorch Geometric (PyG), Deep Graph Library (DGL), etc...

  • PyG and DGL are just like TensorFlow while GraphGallery is more like Keras
  • GraphGallery is a plug-and-play and user-friendly toolbox
  • GraphGallery has high scalaibility for researchers and developers to use

🚀 Installation

  • Build from source (latest version)
git clone https://github.com/EdisonLeeeee/GraphGallery.git
cd GraphGallery
python setup.py install
  • Or using pip (stable version)
pip install -U graphgallery

GraphGallery has been tested on:

  • CUDA 10.1
  • TensorFlow 2.1~2.3, 2.4 is unavailable now and 2.1.2 is recommended.
  • PyTorch 1.5~1.7
  • Pytorch Geometric (PyG) 1.6.1
  • DGL 0.5.2, 0.5.3

🤖 Implementations

Please refer to the examples directory.

⚡ Quick Start

Datasets

more details please refer to GraphData.

Planetoid

fixed datasets

from graphgallery.datasets import Planetoid
# set `verbose=False` to avoid additional outputs 
data = Planetoid('cora', verbose=False)
graph = data.graph
# here `splits` is a dict like instance
splits = data.split_nodes()
# splits.train_nodes:  training indices: 1D Numpy array
# splits.val_nodes:  validation indices: 1D Numpy array
# splits.test_nodes:  testing indices: 1D Numpy array
>>> graph
Graph(adj_matrix(2708, 2708),
      node_attr(2708, 1433),
      node_label(2708,),
      metadata=None, multiple=False)

currently the available datasets are:

>>> data.available_datasets()
('citeseer', 'cora', 'pubmed')

NPZDataset

more scalable datasets (stored with .npz)

from graphgallery.datasets import NPZDataset;
# set `verbose=False` to avoid additional outputs
data = NPZDataset('cora', verbose=False)
graph = data.graph
# here `splits` is a dict like instance
splits = data.split_nodes(random_state=42)
>>> graph
Graph(adj_matrix(2708, 2708),
      node_attr(2708, 1433),
      node_label(2708,),
      metadata=None, multiple=False)

currently the available datasets are:

>>> data.available_datasets()
('citeseer','citeseer_full','cora','cora_ml','cora_full',
 'amazon_cs','amazon_photo','coauthor_cs','coauthor_phy', 
 'polblogs', 'pubmed', 'flickr','blogcatalog','dblp')

Framework-neutral Tensor

  • Strided (dense) Tensor
>>> backend()
TensorFlow 2.1.2 Backend

>>> from graphgallery import functional as gf
>>> arr = [1, 2, 3]
>>> gf.astensor(arr)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 2, 3], dtype=int32)>
  • Sparse Tensor
>>> import scipy.sparse as sp
>>> sp_matrix = sp.eye(3)
>>> gf.astensor(sp_matrix)
<tensorflow.python.framework.sparse_tensor.SparseTensor at 0x7f1bbc205dd8>
  • also works for PyTorch, just like
>>> from graphgallery import set_backend
>>> set_backend('torch') # torch, pytorch or th
PyTorch 1.6.0+cu101 Backend

>>> gf.astensor(arr)
tensor([1, 2, 3])

>>> gf.astensor(sp_matrix)
tensor(indices=tensor([[0, 1, 2],
                       [0, 1, 2]]),
       values=tensor([1., 1., 1.]),
       size=(3, 3), nnz=3, layout=torch.sparse_coo)
  • To Numpy or Scipy sparse matrix
>>> tensor = gf.astensor(arr)
>>> gf.tensoras(tensor)
array([1, 2, 3])

>>> sp_tensor = gf.astensor(sp_matrix)
>>> gf.tensoras(sp_tensor)
<3x3 sparse matrix of type '<class 'numpy.float32'>'
    with 3 stored elements in Compressed Sparse Row format>
  • Or even convert one Tensor to another
>>> tensor = gf.astensor(arr, backend="tensorflow") # or "tf" in short
>>> tensor
<tf.Tensor: shape=(3,), dtype=int64, numpy=array([1, 2, 3])>
>>> gf.tensor2tensor(tensor)
tensor([1, 2, 3])

>>> sp_tensor = gf.astensor(sp_matrix, backend="tensorflow") # set backend="tensorflow" to convert to tensorflow tensor
>>> sp_tensor
<tensorflow.python.framework.sparse_tensor.SparseTensor at 0x7efb6836a898>
>>> gf.tensor2tensor(sp_tensor)
tensor(indices=tensor([[0, 1, 2],
                       [0, 1, 2]]),
       values=tensor([1., 1., 1.]),
       size=(3, 3), nnz=3, layout=torch.sparse_coo)

Example of GCN model

from graphgallery.gallery import GCN

model = GCN(graph, attr_transform="normalize_attr", device="CPU", seed=123)
# build your GCN model with default hyper-parameters
model.build()
# train your model. here splits.train_nodes and splits.val_nodes are numpy arrays
# verbose takes 0, 1, 2, 3, 4
history = model.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100)
# test your model
# verbose takes 0, 1, 2
results = model.test(splits.nodes, verbose=1)
print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')

On Cora dataset:

Training...
100/100 [==============================] - 1s 14ms/step - loss: 1.0161 - accuracy: 0.9500 - val_loss: 1.4101 - val_accuracy: 0.7740 - Dur.: 1.4180
Testing...
1/1 [==============================] - 0s 62ms/step - loss: 1.4123 - accuracy: 0.8120 - Dur.: 0.0620
Test loss 1.4123, Test accuracy 81.20%

Customization

  • Build your model you can use the following statement to build your model
# one hidden layer with hidden units 32 and activation function RELU
>>> model.build(hiddens=32, activations='relu')

# two hidden layer with hidden units 32, 64 and all activation functions are RELU
>>> model.build(hiddens=[32, 64], activations='relu')

# two hidden layer with hidden units 32, 64 and activation functions RELU and ELU
>>> model.build(hiddens=[32, 64], activations=['relu', 'elu'])
  • Train your model
# train with validation
>>> history = model.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100)
# train without validation
>>> history = model.train(splits.train_nodes, verbose=1, epochs=100)

here history is a tensorflow History instance.

  • Test you model
>>> results = model.test(splits.test_nodes, verbose=1)
Testing...
1/1 [==============================] - 0s 62ms/step - loss: 1.4123 - accuracy: 0.8120 - Dur.: 0.0620
>>> print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
Test loss 1.4123, Test accuracy 81.20%

Visualization

NOTE: you must install SciencePlots package for a better preview.

import matplotlib.pyplot as plt
with plt.style.context(['science', 'no-latex']):
    fig, axes = plt.subplots(1, 2, figsize=(15, 5))
    axes[0].plot(history.history['accuracy'], label='Training accuracy', linewidth=3)
    axes[0].plot(history.history['val_accuracyuracy'], label='Validation accuracy', linewidth=3)
    axes[0].legend(fontsize=20)
    axes[0].set_title('Accuracy', fontsize=20)
    axes[0].set_xlabel('Epochs', fontsize=20)
    axes[0].set_ylabel('Accuracy', fontsize=20)

    axes[1].plot(history.history['loss'], label='Training loss', linewidth=3)
    axes[1].plot(history.history['val_loss'], label='Validation loss', linewidth=3)
    axes[1].legend(fontsize=20)
    axes[1].set_title('Loss', fontsize=20)
    axes[1].set_xlabel('Epochs', fontsize=20)
    axes[1].set_ylabel('Loss', fontsize=20)

    plt.autoscale(tight=True)
    plt.show()        

visualization

Using TensorFlow/PyTorch Backend

>>> import graphgallery
>>> graphgallery.backend()
TensorFlow 2.1.2 Backend

>>> graphgallery.set_backend("pytorch")
PyTorch 1.6.0+cu101 Backend

GCN using PyTorch backend

# The following codes are the same with TensorFlow Backend
>>> from graphgallery.gallery import GCN
>>> model = GCN(graph, attr_transform="normalize_attr", device="GPU", seed=123);
>>> model.build()
>>> history = model.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100)
Training...
100/100 [==============================] - 0s 5ms/step - loss: 0.6813 - accuracy: 0.9214 - val_loss: 1.0506 - val_accuracy: 0.7820 - Dur.: 0.4734
>>> results = model.test(splits.test_nodes, verbose=1)
Testing...
1/1 [==============================] - 0s 1ms/step - loss: 1.0131 - accuracy: 0.8220 - Dur.: 0.0013
>>> print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
Test loss 1.0131, Test accuracy 82.20%

❓ How to add your datasets

This is motivated by gnn-benchmark

from graphgallery.data import Graph

# Load the adjacency matrix A, attribute matrix X and labels vector y
# A - scipy.sparse.csr_matrix of shape [num_nodes, num_nodes]
# X - scipy.sparse.csr_matrix or np.ndarray of shape [num_nodes, num_attrs]
# y - np.ndarray of shape [num_nodes]

mydataset = Graph(adj_matrix=A, node_attr=X, node_label=y)
# save dataset
mydataset.to_npz('path/to/mydataset.npz')
# load dataset
mydataset = Graph.from_npz('path/to/mydataset.npz')

❓ How to define your models

You can follow the codes in the folder graphgallery.gallery and write you models based on:

  • TensorFlow
  • PyTorch
  • PyTorch Geometric (PyG)
  • Deep Graph Library (DGL)

NOTE: PyG backend and DGL backend now are supported in GraphGallery!

>>> import graphgallery
>>> graphgallery.set_backend("pyg")
PyTorch Geometric 1.6.1 (PyTorch 1.6.0+cu101) Backend

GCN using PyG backend

# The following codes are the same with TensorFlow or PyTorch Backend
>>> from graphgallery.gallery import GCN
>>> model = GCN(graph, attr_transform="normalize_attr", device="GPU", seed=123);
>>> model.build()
>>> history = model.train(splits.train_nodes, splits.val_nodes, verbose=1, epochs=100)
Training...
100/100 [==============================] - 0s 3ms/step - loss: 0.5325 - accuracy: 0.9643 - val_loss: 1.0034 - val_accuracy: 0.7980 - Dur.: 0.3101
>>> results = model.test(splits.test_nodes, verbose=1)
Testing...
1/1 [==============================] - 0s 834us/step - loss: 0.9733 - accuracy: 0.8130 - Dur.: 8.2737e-04
>>> print(f'Test loss {results.loss:.5}, Test accuracy {results.accuracy:.2%}')
Test loss 0.97332, Test accuracy 81.30%

similarly, you can use DGL backend just by:

# DGL PyTorch backend
>>> graphgallery.set_backend("dgl")
# DGL TensorFlow backend
>>> graphgallery.set_backend("dgl-tf")

⭐ Road Map

  • Add PyTorch models support
  • Add other frameworks (PyG and DGL) support
  • Add more GNN models (TF and Torch backend)
  • Support for more tasks, e.g., graph Classification and link prediction
  • Support for more types of graphs, e.g., Heterogeneous graph
  • Add Docstrings and Documentation (Building)
  • Comprehensive tutorials

😘 Acknowledgement

This project is motivated by Pytorch Geometric, Tensorflow Geometric, Stellargraph and DGL, etc., and the original implementations of the authors, thanks for their excellent works!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphgallery-0.6.0.tar.gz (105.8 kB view hashes)

Uploaded Source

Built Distribution

graphgallery-0.6.0-py3-none-any.whl (228.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page