Encode particle physics data onto graph structures.
Project description
graphicle
Utilities for representing high energy physics data as graphs / networks.
Installation
pip install graphicle
Features
Object oriented interface to track-level particle data for collider physics, with routines for constructing and performing calculations over graph-structured data.
Provides data structures for:
4-momenta
PDG codes
Particle status codes
Color codes
Helicity / spin polarisation data
COO adjacency lists (for graph-structured data)
>>> import graphicle as gcl
# query pdg records
>>> pdgs = gcl.PdgArray([1, 3, 6, -6, 25, 2212])
>>> pdgs.name
['d', 's', 't', 't~', 'H0', 'p'], dtype=object)
>>> pdgs.charge
array([-0.33333333, -0.33333333, 0.66666667, -0.66666667, 0. ,
1. ])
# extract information from momentum data
>>> pmu_data
array([( 1.95057378e-02, 3.12923088e-02, 3.53556064e-01, 3.55473730e-01),
( 2.60116947e+01, -3.63466398e+00, -3.33718718e+00, 2.64755711e+01),
( 5.91884324e-05, -7.62144267e-06, -6.76385314e-06, 6.00591927e-05),
( 2.82881807e+01, 4.32224823e+00, 2.14691072e+02, 2.16589841e+02),
(-8.73280642e-02, -6.48540201e-02, 3.73744945e-01, 6.28679140e-01),
( 1.06204871e-01, 5.78888984e-01, -1.44899819e+02, 1.44901081e+02)],
dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8'), ('e', '<f8')])
>>> pmu = gcl.MomentumArray(pmu_data)
... pmu
MomentumArray([[ 1.95057378e-02 3.12923088e-02 3.53556064e-01 3.55473730e-01]
[ 2.60116947e+01 -3.63466398e+00 -3.33718718e+00 2.64755711e+01]
[ 5.91884324e-05 -7.62144267e-06 -6.76385314e-06 6.00591927e-05]
[ 2.82881807e+01 4.32224823e+00 2.14691072e+02 2.16589841e+02]
[-8.73280642e-02 -6.48540201e-02 3.73744945e-01 6.28679140e-01]
[ 1.06204871e-01 5.78888984e-01 -1.44899819e+02 1.44901081e+02]],
dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8'), ('e', '<f8')])
>>> pmu.pt
array([3.68738715e-02, 2.62644064e+01, 5.96771055e-05, 2.86164812e+01,
1.08776076e-01, 5.88550704e-01])
>>> pmu.mass
array([-7.45058060e-09, 5.11000489e-04, 9.09494702e-13, 5.10991478e-04,
4.93680000e-01, 1.39570000e-01])
>>> pmu.eta
array([ 2.95639434, -0.12672178, -0.11309956, 2.71277683, 1.94796328,
-6.1992861 ])
>>> pmu.phi
array([ 1.01339184, -0.138833 , -0.12806107, 0.15162078, -2.5028134 ,
1.38935084])
# calculate the inter-particle distances
>>> pmu.delta_R(pmu)
array([[0. , 3.2913868 , 3.27485993, 0.89554388, 2.94501476,
9.16339617],
[3.2913868 , 0. , 0.01736661, 2.85431528, 3.14526968,
6.26189934],
[3.27485993, 0.01736661, 0. , 2.83968296, 3.14442819,
6.27249595],
[0.89554388, 2.85431528, 2.83968296, 0. , 2.76241933,
8.99760198],
[2.94501476, 3.14526968, 3.14442819, 2.76241933, 0. ,
8.4908571 ],
[9.16339617, 6.26189934, 6.27249595, 8.99760198, 8.4908571 ,
0. ]])
Graphicle really shines with its composite data structures. These can be used to filter and query heterogeneous particle data records simultaneously, either using user provided boolean masks, or MaskArray instances produced with routines in the select module. Additionally, routines in the calculate and transform modules take composite data structures to standardise useful calculations which blends multiple particle data records.
To see an example, let’s generate a collision event using Pythia, wrapped with showerpipe.
>>> from showerpipe.generator import PythiaGenerator
...
... lhe_path = "https://zenodo.org/record/6034610/files/unweighted_events.lhe.gz"
... gen = PythiaGenerator("pythia-settings.cmnd", lhe_path, 1)
>>> for event in gen:
... graph = gcl.Graphicle.from_event(event)
... break
>>> print(graph)
name px py pz energy color anticolor helicity status final src dst
p 0.00E+00 0.00E+00 6.50E+03 6.50E+03 0 0 9 -12 False 0 -1
p 0.00E+00 0.00E+00 -6.50E+03 6.50E+03 0 0 9 -12 False 0 -2
g 0.00E+00 0.00E+00 2.99E+02 2.99E+02 503 502 1 -21 False -6 -3
g -0.00E+00 -0.00E+00 -5.99E+02 5.99E+02 501 503 1 -21 False -7 -3
t 2.34E+02 -2.20E+01 -4.76E+02 5.58E+02 501 0 0 -22 False -3 -4
... ... ... ... ... ... ... ... ... ... ... ...
gamma 1.30E-02 -1.30E+00 -3.24E+00 3.49E+00 0 0 9 91 True -969 979
gamma 1.70E-01 -8.21E-01 -2.32E+00 2.47E+00 0 0 9 91 True -970 980
gamma 3.12E-01 -2.26E+00 -6.82E+00 7.19E+00 0 0 9 91 True -970 981
gamma 9.38E-03 -3.58E-01 -7.98E-01 8.75E-01 0 0 9 91 True -971 982
gamma 3.08E-02 -4.36E-02 -4.56E-02 7.02E-02 0 0 9 91 True -971 983
[1065 particles × 12 attributes]
>>> graph.pdg
PdgArray([2212 2212 21 ... 22 22 22], dtype=int32)
>>> graph.adj
AdjacencyList([[ 0 -1]
[ 0 -2]
[ -6 -3]
...
[-970 981]
[-971 982]
[-971 983]],
dtype=[('src', '<i4'), ('dst', '<i4')])
# select all descendants of the W bosons from the hard process
>>> W_mask = gcl.select.hard_descendants(graph, {24})
>>> W_mask
MaskGroup(mask_arrays=["W+", "W-"], agg_op=OR)
# filter data record to get final state W+ boson descendants
>>> Wp_desc = graph[W_mask["W+"] & graph.final]
>>> print(Wp_desc)
name px py pz energy color anticolor helicity status final src dst
gamma 2.46E-05 -5.65E-06 -1.54E-05 2.95E-05 0 0 9 51 True -350 353
nu(tau) 1.72E+02 3.52E+01 -3.18E+02 3.63E+02 0 0 9 52 True -351 354
nu(tau)~ 1.73E+01 -4.48E+00 -1.08E+01 2.09E+01 0 0 9 91 True -352 687
pi+ 1.19E+01 -3.15E+00 -7.51E+00 1.44E+01 0 0 9 91 True -352 690
gamma 4.12E+00 -1.09E+00 -2.19E+00 4.79E+00 0 0 9 91 True -688 879
gamma 1.54E+00 -4.72E-01 -8.87E-01 1.84E+00 0 0 9 91 True -688 880
gamma 2.11E+00 -4.94E-01 -9.96E-01 2.38E+00 0 0 9 91 True -689 881
gamma 3.22E+00 -7.42E-01 -1.71E+00 3.72E+00 0 0 9 91 True -689 882
[8 particles × 12 attributes]
# numpy can interface with graphicle - let's sum the momenta
>>> Wp_sum = np.sum(Wp_desc.pmu, axis=0)
>>> Wp_sum.mass
80.419002446
More information on the API is available in the documentation
Note on FastJet compatibility
graphicle offers a function wrapper around fastjet to cluster MomentumArray objects using their optimised generalised-kT algorithm. However, this library cannot build wheels for all systems, including Windows and the latest macOS systems using ARM architectures. Therefore, in order to use graphicle.select.fastjet_clusters(), you must install graphicle with fastjet as an optional dependency. This enables users who don’t want the fastjet wrapper to ignore it, and still make the most of the many other features of graphicle. Use the following to get started:
pip install "graphicle[fastjet]"
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file graphicle-0.4.1.tar.gz
.
File metadata
- Download URL: graphicle-0.4.1.tar.gz
- Upload date:
- Size: 67.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ec0d1decbe98418b830464baf09a4dc82f976e37cb675fd2caca1799db26a5a |
|
MD5 | 56a69c14aa44290f727134c6498f28ef |
|
BLAKE2b-256 | 7e298ddbf28d481daf47f32a8ab65bbc77da7aae3f3dd3bed9aed9494a491875 |